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1 Introduction

Two papers, one by Gérard Laumon [11] and one by the author [9] appeared in-
dependently in a collected volume of the Duke Mathematical Journal dedicated to
Yuri Manin. Both concern the cotangent bundle of a space of holomorphic principal
G-bundles P over a curve C, where a cotangent vector is interpreted as a section Φ
of the vector bundle ad(P ) ⊗ K. Laumon in his paper showed that the subvariety
for which Φ is nilpotent is Lagrangian, and the author in his introduced a space of
Poisson-commuting functions yielding an integrable system, and identified the generic
fibre (for the classical groups) with an open set in an abelian variety. This is also
Lagrangian and in this context Laumon’s nilpotent cone is the special fibre over the
origin.

The introduction of a concrete example eluded the author in [9], and one purpose of
this article is to address that omission. The simplest situation consists of stable rank
2 vector bundles E, where Λ2E is fixed of odd degree, over a curve C of genus 2. The
moduli space was identified by Newstead [12] as the 3-dimensional intersection of two
quadrics. This case has, however, been generalized in a recent paper by Beauville
at al. [2], producing an explicit formula for an integrable system on the cotangent
bundle of an intersection of quadrics of arbitrary dimension n. In this article we take
that formula, reinterpret it, and discuss some of the issues, notably the concept of
very stable points introduced in Laumon’s article, in this particular context.

The very stable bundles are those for which there is no non-zero nilpotent Φ (which
we shall now call a Higgs field). It is an open set in the moduli space of stable
bundles and its complement, the wobbly locus, has been the subject of several recent
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investigations because of its role in aspects of the Geometric Langlands programme,
especially in the approach of Donagi et al. [5]. It is a concept which makes sense
for any integrable system defined on a cotangent bundle. We show here that, for the
intersection X = Q ∩ Q1 of dimension n, the quotient by Zn+2

2 is isomorphic to Pn

realized as the n-fold symmetric product of P1 and the very stable points map to the
n-tuples of distinct points. We then pursue the analogy with moduli of bundles a
little further and observe that the formula in [2] for the Poisson-commuting functions
directly defines a family of commuting differential operators on the square root of the
canonical bundle of X and hence offers the opportunity to explore a version of the
analytic Langlands correspondence as in [6].

All of the foregoing capitalizes on the explicit form of the functions generating the in-
tegrable system by expressing them in terms of quasi-parabolic rank 2 vector bundles
on P1. However a very recent paper [3] shows that this is the usual integrable system
defined on the cotangent bundle of the moduli space of semi-stable twisted Spin(2g)
bundles over a hyperelliptic curve C, invariant under the hyperelliptic involution τ ,
following the description of Ramanan [14]. The remarkable feature in this interpreta-
tion is that the Higgs field Φ, locally taking values in the Lie algebra so(2g), in fact
has rank 2. In the final section we reveal the link with our description above. This
interpretation now offers the opportunity to produce a moduli space of Higgs bundles
in which Laumon’s nilpotent cone compactifies.

2 A symplectic quotient

Let V ∼= C2 be a 2-dimensional symplectic vector space with skew form ⟨v, w⟩ and
consider the action of SL(2,C) on V ⊗CN+1. The moment map is

m(v1, . . . , vN , v0) =
N∑
i=0

vi ⊗ vi

where we identify the lie algebra of SL(2,C) with S2V . Each ⟨vi, vj⟩ is an invariant
function and hence defined on the symplectic quotient m−1(0)/SL(2,C). Since

v0 ⊗ v0 = −
N∑
i=1

vi ⊗ vi

it follows that ⟨vi, v0⟩2 + · · ·+ ⟨vN , v0⟩2 = 0. Put xi = ⟨vi, v0⟩.

Take a symplectic basis e1, e2 of V with v0 = e2, then vi = xie1 + yie2 and setting
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m = 0 gives
N∑
i=1

x2
i = 0,

N∑
i=1

y2i = −1,
N∑
i=1

xiyi = 0 (1)

and the stabilizer of e2 acts as yi 7→ yi + txi. This leaves x ∧ y ∈ Λ2CN unchanged
where x = (x1, . . . , xN), y = (y1, . . . , yN) and for x ∧ y ̸= 0 we obtain a symplectic
manifold which is a coadjoint orbit of SO(N) acting on CN . It consists of the non-null
cotangent vectors of the quadric Q : {x2

1 + · · ·+ x2
N = 0} ⊂ PN−1.

The function ⟨vi, vj⟩ = xiyj − xjyi is the moment map for the canonical lift of the
vector field Xij = xi∂j − xj∂i on Q to T ∗Q.

3 Parabolic bundles

Consider now the meromorphic Higgs field on the trivial bundle over P1 defined by

Φ =
N∑
i=1

vi ⊗ vi
z − µi

dz. (2)

This has nilpotent residue vi ⊗ vi at z = µi and since v1 ⊗ v1 + . . .+ v0 ⊗ v0 = 0 and
the sum of residues is zero, we have a nilpotent residue v0 ⊗ v0 also at infinity.

The parabolic version of the integrable system [9] has Poisson commuting functions
given by the coefficients of

tr Φ2 = −
∑
i,j

⟨vi, vj⟩2

(z − µi)(z − µj)
dz2

or equivalently, by taking the residue at z = µi the functions

fi =
∑
j ̸=i

(xiyj − xjyi)
2

(µi − µj)
.

Written as a symmetric tensor this is

si =
∑
j ̸=i

(xi∂j − xj∂i)
2

(µi − µj)
. (3)

Now consider q1 = µ1x
2
1 + · · · + µNx

2
N and take the inner product of the symmetric

tensor si in (3) with dq1. We obtain∑
j ̸=i

4xixj(µj − µi)
(xi∂j − xj∂i)

(µi − µj)
= −4x2

i

∑
j ̸=i

xj∂j + 4xi∂i
∑
j ̸=i

x2
j = −4x2

i

N∑
j=1

xj∂j
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using x2
1+· · ·+x2

N = 0. But this is a multiple of the Euler vector field onCN and hence
is zero in PN−1. We conclude that si defines a symmetric tensor on the intersection
X of Q with Q1 defined by q1 = 0 and (3) is the formula in [2] (Proposition 7.4).

Returning to the Higgs field Φ, observe that as z → ∞,

Φ = −v0 ⊗ v0
dz

z
+

N∑
i=1

µivi ⊗ vi
dz

z2
+ · · · = ϕ0

dz

z
+ ϕ1

dz

z2
+ · · · (4)

and the equation q1 = 0 is equivalent to trϕ0ϕ1 = 0, which implies that v0 in the kernel
of ϕ0 is also an eigenvector of ϕ1. We may therefore apply a Hecke transformation at
infinity using the distinguished subspace defined by v0 to remove the singularity of Φ
at the expense of considering E = O ⊕ O(−1) with v0 now interpreted as a section
of the unique trivial subbundle of E.

Remarks:

1. The spectral curve S for a generic Φ is the hyperelliptic curve y2 +detΦ = 0, and
a line bundle on S produces by direct image the bundle E and Higgs field Φ. Since
Φ only determines the vi up to sign, the fibre in T ∗X of the integrable system is an
unramified covering of an open set of the Jacobian of S. It is described in [2] as a
quotient of the Jacobian but the two are related by the map of divisor classes x 7→ 2x.

2. Using the basis e1, e2 the Higgs field Φ is given by

Φ(e1) = −
N∑
i=1

xiyi
z − µi

e1 −
N∑
i=1

y2i
z − µi

e2

Φ(e2) =
N∑
i=1

x2
i

z − µi

e1 +
N∑
i=1

xiyi
z − µi

e2

and in this form is recognizable as the Garnier system or the classical Gaudin system.
The reader may see this in a more general context in the survey lectures [7].

4 Polynomials

We now view the Higgs field as Φ : E → E ⊗ K(D) where E ∼= O ⊕ O(−1) and
D is the divisor of the points z = µi. The trivial subbundle is unique and hence
Φ determines another divisor consisting of the points ai ∈ P1 at which Φ preserves
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O ⊂ E. In the formulas above this means Φ(v0) = λv0 or ⟨Φ(v0), v0⟩ = 0 or

0 = ⟨Φ(v0), v0⟩ =
N∑
i=1

⟨vi, v0⟩2

z − µi

=
N∑
i=1

x2
i

z − µi

. (5)

From the expansion at infinity (4) we see that the leading terms vanish when x2
1 +

· · · + x2
N = 0 = µ1x

2
1 + · · · + µNx

2
N and so clearing the denominators this gives a

polynomial p(z) in z of degree n = N − 3 with roots z = a1, . . . , an.

We calculate the eigenvalue λk at z = ak directly, supposing ak ̸= µj for any j:

N∑
i=1

⟨vi, v0⟩vi
ak − µi

= λkv0

and hence
N∑
i=1

⟨vi, v0⟩⟨vi, vj⟩
ak − µi

= λk⟨v0, vj⟩

for all j, or
N∑
i=1

xi(xiyj − xjyi)

ak − µi

= −λkxj

which, using (5) gives

λk =
N∑
i=1

xiyi
ak − µi

(6)

The Poisson-commuting functions are, in this parabolic context, the coefficients of
tr Φ2 ∈ H0(P1, K2(2D)) = H0(P1,O(2N − 4)). Since Φ is nilpotent at z = µi this
reduces to H0(P1,O(N−4)) of dimension n = N−3 = dimX. The integrable system
is a map f : T ∗X → H0(P1,O(n− 1)).

Evaluation of a polynomial of degree (n − 1) at n distinct points is an alternative
basis to using the coefficients of powers of z, so if we assume the ai are distinct, we
may use these points to describe the quadratic functions on the cotangent bundle.
But at z = ak, Φ(v0) = λkv0 and trΦ2 = −λ2

k. It follows from (6) that we obtain the
n Poisson-commuting functions

fk =

(
N∑
i=1

xiyi
ak − µi

)2

= ℓi(y)
2 (7)
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We have n linear forms ℓi(y) where also
∑

i xiyi = 0 =
∑

i µixiyi. Suppose ℓi(y) = 0
for all i, then the determinant of the following matrix must vanish:

x1(a1 − µ1)
−1 x2(a1 − µ2)

−1 · · · xN(a1 − µN)
−1

x1(a2 − µ1)
−1 x2(a2 − µ2)

−1 · · · xN(a2 − µN)
−1

· · · · · · · · ·
x1 x2 · · · xN

µ1x1 µ2x2 · · · µNxN

 (8)

and this evaluates to

±
N∏
i=1

xi

p(µi)

∏
j<k

(aj − ak)
∏
ℓ<m

(µℓ − µn)

where the aj are the roots of p(z) = 0 where p(z) = x2
1(z − µ2) . . . (z − µN) + · · · so

p(µ1) = x2
1(µ1 − µ2)(µ1 − µ3) . . . (µ1 − µN) etc.

Hence the determinant is non-zero since the µi are distinct for a smooth intersection
and the aj distinct by assumption. This means that the ℓi are linearly independent
and ℓ2i span the n-dimensional space of functions for the integrable system.

Remarks:

1. In the context of mirror symmetry for Higgs bundles the notion of multiplicity
algebra was introduced in [8]. For a principal G-bundle this is the algebra with
relations defined by the invariant polynomials of G on the cotangent space. Even in
rank 2, these can be quite complicated (see [10] for example) but in the above case
we have seen that it is a sum of squares of linear functions if the ai are distinct and
disjoint from the µj.

2. From the point of view of the spectral curve, the vector bundle E is the direct
image of a line bundle L of degree n under the projection π : S → P1. Since the
vector bundle is O ⊕ O(−1) there is a canonical section s of L corresponding to v0
spanning the trivial subbundle. The image in P1 of the divisor of s is a1 + . . .+ an.

3. In [1], Atiyah described projective bundles over a curve C of genus 2 in terms of
vector bundles O → E → L where L has degree 1. There is a unique section of LK
which lifts to E ⊗ K and its divisor consists of three points on C which project to
our points a1, a2, a3 in P1 under the quotient map of the hyperelliptic involution.

4. In the integrable systems community, passing to the coordinates a1, . . . , an is
known as separation of variables as in [15].
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5 Very stable points

Given an integrable system on the cotangent bundle of a manifold M one may say
that a point in M is very stable if there are no cotangent vectors for which all the
functions of the integrable system vanish. In the case of a principal G-bundle this
means a Higgs field Φ such that all invariant polynomials on g vanish, and hence
Φ is nilpotent everywhere. For the intersection of quadrics, what we showed in the
previous section was that if all the functions vanish, and xi ̸= 0 for any i then ℓi(y) = 0
for all y. This implies y = 0 if the aj are distinct, and then (x1, . . . , xN) is a very
stable point.

As a consequence, if we have a nilpotent Higgs field, then there must be a multiple
zero of p(z), and we can see this in general directly: since E = O ⊕O(−1) we write

Φ =

(
b a
c −b

)
(9)

where c ∈ H0(P1,O(n)), b ∈ H0(P1,O(n+1)), a ∈ H0(P1,O(n+2)), so that c vanishes
when O is preserved, hence c is essentially p(z). Then Φ is nilpotent if b2 + ac = 0
and at a zero ai of c, b = 0 so if a ̸= 0 then c = −a−1b2 has a double zero. The full
result is the following:

Proposition 1 A point (x1, . . . , xN) on the intersection of quadrics Q ∩ Q1 is very
stable with respect to the integrable system if and only if the polynomial

p(z) =
N∑
i=1

x2
i (z − µ1)(z − µ2) . . . ̂(z − µi) . . . (z − µN)

has distinct roots (including z = ∞).

Proof: Framed in terms of Higgs fields acting on O ⊕ O(−1) we can transform
by the action of PGL(2,C) on P1. Therefore z = ∞ has no distinguished role, and
we may assume that the ai, roots of p(z) = 0 are finite. In the previous section
we assumed ai ̸= µj so we should consider the case a1 = µ1 for example, then
x2
1(µ1 − µ2) . . . (µ1 − µN) = 0 and so x1 = 0 and we are in the situation of an

intersection of quadrics of dimension n − 1. Induction on n then incorporates this
case. Appealing to the previous section we see that if the ai are distinct we have a
very stable point. We now need the converse.

Suppose now a2 = a1 and z = a1 is a double zero of p(z), with a1, a3, . . . an distinct.
Then the matrix (8) is singular and we have a nonzero ξ in the cotangent space such
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that ℓi(y) = 0 for i ̸= 2. Now choose a basis for H0(P1,O(n − 1)) by evaluation at
a1, a3, . . . an and evaluation of the derivative at a1. In the matrix form (9) near z = a1
we have c = (z−a1)

2(c0+ . . .), b = (z−a1)(b0+ . . .) so that tr Φ2 = (z−a1)
2(d0+ . . .)

which vanishes at z = a1 together with its first derivative. Hence all functions of
the integrable system vanish and the Higgs field is nilpotent. The argument can be
modified for several multiple zeros. 2

Remarks:

1. As shown in [13], a vector bundle E on a curve is very stable if and only if the
map from the cotangent space H0(C,EndE ⊗ K) to the base Cn of the integrable
system is proper. In our case, the map is a linear isomorphism of Cn followed by the
map (y1, . . . , yn) 7→ (y21, . . . , y

2
n) which is clearly proper.

2. The complement of the very stable points is the inverse image of the discriminant
hypersurface given by the resultant of p and p′ under the map X → Pn defined by
xi 7→ x2

i 1 ≤ i ≤ N . In the case n = 3, concerning stable bundles on a genus 2 curve,
this is observed in [5].

6 Differential operators

The authors of [2] present the Poisson-commuting functions in the form

si =
∑
j ̸=i

(xi∂j − xj∂i)
2

µi − µj

considered as sections of the symmetric power S2T of the tangent bundle ofX, but this
can also be interpreted as a second-order differential operator. In factXij = xi∂j−xj∂i
is the vector field on the quadric Q defining rotation in the xi, xj-plane, these elements
providing the standard basis for the lie algebra so(N). From this viewpoint si is a
differential operator ∆i acting on local sections of any homogeneous vector bundle
over Q. Take the line bundle O(k) from the embedding Q ⊂ PN−1: we would like to
define ∆i as an operator on local sections on Q∩Q1, since we have already seen that
its symbol is defined on the intersection.

So consider its action on fq1 where f is a local section of O(k−2), which we consider
as a function f(x) homogenous of degree (k − 2). We have

∆i(fq1) = ∆i(f)q1 + 2
∑
j ̸=i

(xi∂jf − xj∂if)(xi∂jq1 − xj∂iq1)

µi − µj

+ f∆iq1.
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Now (xi∂jq1 − xj∂iq1) = 2(µj − µi)xixj and so the middle term may be written as

−4
∑
j ̸=i

xixj(xi∂jf − xj∂if) = −4x2
i

∑
j ̸=i

(xj∂jf) + 4xi∂if
∑
j ̸=i

x2
j = −4x2

i (k − 2)f

using the homogeneity of f and x2
1 + · · · + x2

N = 0. And, using (xi∂jq1 − xj∂iq1) =
2(µj − µi)xixj again,

∆iq1 = −2
∑
j ̸=i

(xi∂j − xj∂i)xixj = −2
∑
j ̸=i

(x2
i − x2

j) = −2(N − 1)x2
i − 2x2

i = −2Nx2
i

Hence ∆i(fq1) = ∆i(f)q1 + x2
i (−4(k − 2) − 2N)f which means that if we take k =

−(N − 4)/2 then ∆i is a well-defined holomorphic operator on X, since divisibility
by q1 is preserved.

Now, as an intersection of two quadrics, KX ⊗O(−2)⊗O(−2) ∼= KPN−1
∼= O(−N) so

KX
∼= O(−(N − 4)) and O(k) is a square root of the canonical bundle. This provides

a setting analogous to [6] where the operators and their conjugates act on global C∞

sections of K
1/2
X ⊗ K̄

1/2
X , where there is a natural L2 inner product.

The operators ∆i,∆j commute as can be seen by a direct calculation: ∆i is of the
form ∑

j ̸=i

Ωij

µi − µj

with Ωij = Ωji exactly as in the KZ-equation and these operators commute if the
Kohno-Drinfeld relations hold: [Ωij,Ωkℓ] = 0 if the indices are distinct and otherwise
[Ωij,Ωik + Ωjk] = 0.

However, with Ωij = X2
ij, the vector fields Xij, Xik, Xjk form a basis for a copy of

so(3) ⊂ so(N) and then the Casimir X2
ij + X2

ik + X2
jk = Ωij + Ωik + Ωjk commutes

with everything, in particular Ωij, giving the second relation. The first is clear since
Xij, Xkℓ are rotations in orthogonal planes.

7 X as a moduli space

Ramanan’s paper [14] identifies the intersection of quadrics X of odd dimension n =
2g − 1 as the moduli space of semi-stable Spin(2g)-bundles on a hyperelliptic curve
C of genus g, invariant by the hyperelliptic involution τ . The authors of [3] show
that the original integrable system in [9], restricted to the fixed point set of τ , is in
fact equivalent to the one introduced in the earlier paper [2]. Here the curve C is the
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double covering of P1 branched over the points z = µi. We explain now the link with
our rank 2 version, following the remarkable result from [3] that the Spin(2g)-Higgs
field has rank 2.

Higgs fields take values in the adjoint representation, so for their consideration it is
enough to look at the associated orthogonal bundle, rather than the spin bundle. The
work of Bhosle [4] shows that a τ -invariant rank 2g orthogonal bundle on C is equiv-
alent to a degenerate orthogonal bundle on P1, a bundle W with a homomorphism
W → W ∗(1) which drops rank at the points z = µi.

In Ramanan’s construction the projective line P1 is viewed as the base of the pencil
of quadrics zq − q1 = 0 in PN−1, so a point in X defines a one-dimensional subspace
L ⊂ CN , isotropic with respect to the quadratic form qz = zq − q1. Then the
degenerate orthogonal bundle is given by W = L⊥/L of rank N − 2 = 2g where
orthogonality is defined using qz, hence an inner product with values in O(1).

We use the coordinates (xi, yi) as in Section 2 so that x = (x1, . . . , xN) is a point on
X generating the subspace L ⊂ CN . Then

L⊥ = {u ∈ CN :
N∑
i=1

(z − µi)xiui = 0}.

This clearly contains the subspace
∑N

i=1 xiui = 0 =
∑N

i=1 µixiui defining tangents to
X, but more invariantly since TxP

N−1 = Hom(L,CN/L), we have

L⊗ TXx ⊂ L⊥/L = W.

Recall now that L is fixed but L⊥ varies over P1 with the quadratic form qz, so
L ⊗ TXx is a trivial subbundle of W . Since qz has rank N − 1 at each point z = µi

we have (ΛN−2W ∗)2(N − 2) ∼= O(N) and so ΛN−2W ∼= O(−1). It follows (as in [3])
that W is an extension

0 → L∗ ⊗ TXx → W → O(−1) → 0,

where the trivial subbundle is unique, but the extension splits since H1(P1,O(1)) = 0.

Consider now the matrix

Aij =
xiyj − yixj

z − µi

.

This is clearly skew-adjoint with respect to the inner product qz. Furthermore, since∑N
i=1 x

2
j = 0 =

∑N
j=1 xjyj, the vector x lies in the kernel, namely L, and so A preserves

L and L⊥. It thus defines a skew-adjoint meromorphic endomorphism of W = L⊥/L.
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Restrict to u ∈ L∗TXx, and we obtain

N∑
j=1

xiyjuj

z − µi

− yixjuj

z − µi

=
N∑
j=1

yjuj

(
xi

z − µi

)

so the intersection U of L∗TXx with the kernel is given by
∑N

j=1 uiyi = 0 which is
the annihilator in L∗TXx of the cotangent vector defined by y. Then each cotangent
vector y to X at x defines a meromorphic rank 2 skew-adjoint endomorphism A of
W and, appealing to [4], Adz defines a τ -invariant Higgs field on C.

Proposition 2 The Higgs field

Ψ = Adz : W/U → W/U ⊗K

is equivalent to Φ in equation (2).

Proof: If v ∈ CN satisfies
∑N

i=1 vixi = 0, then

vz =

(
v1

z − µ1

, . . . ,
vN

z − µN

)
lies in L⊥ and so has an image in W = L⊥/L. In particular we have xz, yz ∈ L⊥. We
calculate

A(xz) =
N∑
i=1

xiyi
z − µi

xz −
N∑
i=1

x2
i

z − µi

yz

A(yz) =
N∑
i=1

y2i
z − µi

xz −
N∑
i=1

xiyi
z − µi

yz

Comparing this with the explicit expression for Φ in Section 3 and we see that these
coincide if e1 = yz, e2 = −xz.

On the face of it, xz, yz appear to be singular but it is their image in W/U which we
need. The z−1 term in the expansion of

∑N
i=1 xi(vz)i as z → ∞ is zero by definition

and the next term is
∑N

i=1 µixivi which represents the map W → O(−1). This
vanishes for v = x which means xz maps to the trivial subbundle O ⊂ W/U , and
indeed e2 was defined this way. Then xz together with the image of yz gives a local
basis. 2

11



References

[1] M.F.Atiyah, Complex fibre bundles and ruled surfaces, Proc. Lond. Math. Soc. 5
(1955) 40– 434.
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