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Abstract. We establish part of the statement of the geometric Langlands conjecture for ℓ-adic
sheaves over a field of positive characteristic. Namely, we show that the category of automorphic
sheaves with nilpotent singular support is equivalent to the appropriately defined category of ind-
coherent sheaves on the union of some of the connected components of the stack of Langlands
parameters.
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Introduction

0.1. What is done in this paper?

0.1.1. This paper can be considered as a sequel to both the [AGKRRV] and [GLC] series. Namely, in
[AGKRRV1, Conjecture 21.2.7] we proposed a version of the geometric Langlands conjecture (GLC)
that makes sense in the context of ℓ-adic sheaves (for curves over a field of any characteristic).

Namely, it says that the (derived) category

(0.1) ShvNilp(BunG)

of ℓ-adic sheaves on the moduli stack BunG of principal G-bundles on a (smooth and complete) curve
X, with nilpotent singular support, is equivalent to the category

IndCohNilp(LS
restr
Ǧ ),

where:

• LSrestr
Ǧ is the prestack of Ǧ-local systems on X with restricted variation, introduced in

[AGKRRV1, Sect. 1.4];

• The subscript “Nilp” stands for the restriction on the singular support (as coherent sheaves),
introduced in [AG1, Sect. 11.1].

Remark 0.1.2. The fact that the subcategory (0.1) inside the ambient Shv(BunG) is the “right object
to consider” as far as automorphic sheaves are concerned was a discovery of G. Laumon in his seminal
paper [Laum].

There he conjectured that all Hecke eigensheaves must belong to this subcategory. This conjecture
was settled in [AGKRRV1, Theorem 14.4.3]. In fact, more is true: in loc. cit., Theorem 14.4.4 it
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was shown that “any object of Shv(BunG) that remotely looks like a Hecke eigensheaf” belongs to
ShvNilp(BunG).

0.1.3. Unfortunately, we still cannot prove the full GLC over a field of positive characteristic. Rather,
in this paper we establish a partial result. We construct a functor

(0.2) Lrestr
Ǧ : ShvNilp(BunG)→ IndCohNilp(LS

restr
Ǧ ),

and we prove.

Theorem 0.1.4. The functor Lrestr
Ǧ factors via an equivalence

ShvNilp(BunG)
∼→ IndCohNilp(

′LSrestr
Ǧ ) ⊂ IndCohNilp(LS

restr
Ǧ ),

where ′LSrestr
Ǧ is the union of some of the connected components of LSrestr

Ǧ .

This is Theorem 1.3.9(i) in the main body of the paper.

Remark 0.1.5. We remind the reader that the connected components of LSrestr
Ǧ correspond bijectively

to semi-simple Ǧ-local systems (two local systems lie in the same connected component if and only if
they have isomorphic semi-simplifications).

In particular, every irreducible Ǧ-local system lies in its own connected component (which is, how-
ever, stacky and non-reduced).

0.1.6. In addition, we prove:

Theorem 0.1.7. If G = GLn, then the inclusion
′LSrestr

Ǧ ⊂ LSrestr
Ǧ

is an equality.

So at least for G = GLn, Laumon’s vision for the structure of what he called “geometric Langlands
correspondence” has been fully realized.

Remark 0.1.8. One can say that for an arbitrary group G, we have not solved the most mysterious part
of the Langlands conjecture: we do not know that to an irreducible Ǧ-local system there corresponds
a non-zero Hecke eigensheaf.

Over fields of characteristic 0 we know this thanks to the Beilinson-Drinfeld construction of eigen-
sheaves for D-modules, using localization of modules over the affine Kac-Moody algebra at the critical
level1.

0.1.9. Assumptions on the characteristic. The above results rely on the validity of [AGKRRV1], for
which certain assumptions on the characteristic of the ground field are needed, see Sects. 14.4.1 and
D.1.1 in loc. cit.

0.2. Function-theoretic applications. The equivalence established in Theorem 0.1.4 allows us to
deduce information about the classical theory of automorphic functions (in the unramified case over
function fields).

0.2.1. Namely, we let our ground field k be the algebraic closure of a finite field Fq, and we assume
that both X and G are defined over Fq. In this case, the geometric objects involved in (0.2) carry an
automorphism, given by the action of Frobenius.

Taking its categorical trace and applying some existing calculations (namely, ones from [AGKRRV3]
and [BLR]), from Theorem 0.1.4 we obtain:

Theorem 0.2.2. There exists an identification of vector spaces

(0.3) Functc(BunG(Fq),Qℓ) ≃ Γ(′LSarithm
Ǧ , ω),

where:

1Formally speaking, this is not how the proof of GLC for D-modules given in [GLC5] proceeds; however, it does
crucially rely on the localization of KM-modules, albeit slightly differently.
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• Functc(−,Qℓ) stands for the space of compactly supported functions;

• LSarithm
Ǧ := (LSrestr

Ǧ )Frob is the moduli space of Weil local systems on X with respect to Ǧ, and
′LSarithm

Ǧ := (′LSrestr
Ǧ )Frob;

• ω is the dualizing sheaf.

This is stated as Corollary 1.5.6 in the main body of the paper.

Moreover, it follows from the construction of the isomorphism (0.3) that it is compatible with the
action of the excursion algebra

AG := Γ(LSarithm
Ǧ ,O)

on both sides, and in particular, with the action of the Hecke operators.

Remark 0.2.3. Parallel to Remark 0.1.8, Theorem 0.2.2 does not settle the main mystery in classical
Langlands: outside the case of G = GLn, we do not yet know that to an irreducible Langlands
parameter there corresponds a non-zero eigenfunction (if it existed, it would automatically be cuspidal,
by the nature of the isomorphism (0.3)).

Remark 0.2.4. The stack LSarithm
Ǧ is Calabi-Yau2, but is also highly derived in that its structure

sheaf has non-trivial cohomology in infinitely many negative cohomological degrees. This implies that
although there is a canonical map

(0.4) OLSarithm
Ǧ

→ ωLSarithm
Ǧ

,

it is very far from being an isomorphism (although it is such over the quasi-smooth locus).

Ultimately, this phenomenon is responsible for the presence of the Arthur SL2 in the classification
of automorphic functions.

Yet, we expect that in the map

(0.5) Γ(LSarithm
Ǧ ,OLSarithm

Ǧ
)→ Γ(LSarithm

Ǧ , ωLSarithm
Ǧ

),

induced by (0.4), both sides are classical vector spaces (i.e., are concentrated in cohomological degree
0) and the map (0.5) itself is injective. Moreover, we expect that the intersection of the image of
(0.5) with the subspace of cuspidal functions is equal to the space of tempered cuspidal functions (with

respect to any isomorphism Qℓ ≃ C). We hope to take this up in a future work.

Remark 0.2.5. The paper [Ra2] proves an arithmetic result — the non-existence of cusp forms with
certain Langlands parameters — conditional on GLC in characteristic p. Although we only obtain
partial results on GLC in this paper, our results suffice for the applications in [Ra2].

0.3. The methods.

0.3.1. The first step is the construction of the functor (0.2). It is here that the significance of the
subcategory

ShvNilp(BunG) ⊂ Shv(BunG)

comes to the fore.

Namely, it turns out to be the maximal subcategory of Shv(BunG) on which the action of the Hecke
functors factors through a monoidal action of the category

QCoh(LSrestr
Ǧ );

we refer to it as the “spectral action”.

2In the sense that the determinant of the cotangent complex is the trivial line bundle.
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We recover the functor (0.2) by requiring that it intertwines the actions of QCoh(LSrestr
Ǧ ) on the

two sides and makes the following diagram commute:

Vect
Id−−−−−→ Vect

coeffVac

x xΓIndCoh(LSrestr
Ǧ

,−)

ShvNilp(BunG)
Lrestr

−−−−−→ IndCohNilp(LS
restr
Ǧ ),

where the left vertical arrow is the functor of vacuum Whittaker coefficient, see Sect. 9.3.1.

This follows verbatim the construction of the Langlands functor for D-modules and Betti sheaves in
[GLC1, Sect. 1].

0.3.2. As a next step, we show that the functor (0.2) is an equivalence for ℓ-adic sheaves as long as
the ground field over which we work has characteristic 0.

To do so, by the Lefschetz principle, we can replace the initial ground field by the field C of complex
numbers. In the latter case, we compare the functor (0.2) for ℓ-adic sheaves with its counterpart for
Betti sheaves, and we show that if the latter is an equivalence, then so is the ℓ-adic version.

Finally, we quote [GLC1], which says that the Betti version of (0.2) is an equivalence. This is
obtained by combining the fact that the D-module version of (0.2) is an equivalence (which is the
outcome of the [GLC] series) and the Riemann-Hilbert correspondence.

0.3.3. Thus, our task is to deduce Theorem 0.1.4 for a field of positive characteristic from its validity
for a field of characteristic 0. We achieve this by the following procedure.

Let k be our ground field of positive characteristic (assumed algebraically closed). Let R0 := Witt(k)
be the ring of Witt vectors of k, let K0 denote the field of fractions of R0 and let K denote the algebraic
closure of K0. Let R denote the integral closure of R0 in K.

Given a (smooth complete) curve Xk over k, we choose its extension to a (smooth complete) curve
XR0 over Spec(R0). (Such an extension exists by a standard deformation theory argument.) Let XK

be the base change of XR0 to K.

Note that we can identify LSrestr
Ǧ,k with the union of some of the connected components of LSrestr

Ǧ,K ,

see Sect. 3.1.3.

0.3.4. In Sect. 3 we introduce a specialization functor

(0.6) Sp : Shv(BunG,K)→ Shv(BunG,k),

which essentially amounts to the functor of nearby cycles.

We establish the following properties of this functor:

• It commutes with the Hecke functors;
• It commutes with the functors of Eisenstein series;
• It sends the vacuum Poincaré object3 PoincVac

!,K to the vacuum Poincaré object PoincVac
!,k .

The first of these properties implies that the functor Sp sends the direct summand

ShvNilp(BunG,K,k) ⊂ ShvNilp(BunG,K)

that has to do with LSrestr
Ǧ,k ⊂ LSrestr

Ǧ,K to ShvNilp(BunG,k), i.e., we obtain a functor

(0.7) Sp : ShvNilp(BunG,K,k)→ ShvNilp(BunG,k).

3This is the object that corepresents the functor coeffVac.
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Combined with the other properties, one shows that the functor (0.7) preserves compactness and
makes the following diagram commute:

ShvNilp(BunG,K,k)
Lrestr
K−−−−−→
∼

IndCohNilp(LS
restr
Ǧ.k )

Sp

y yId

ShvNilp(BunG,k) −−−−−→
Lrestr
k

IndCohNilp(LS
restr
Ǧ.k ).

0.3.5. However, this is not quite enough to deduce Theorem 0.1.4. What we need is another crucial
property of the functor (0.7), which says that this functor is a Verdier quotient.

It turns out that there is a simple criterion for when a functor between dualizable categories is a
Verdier quotient, see Lemma 5.4.5. This is a general categorical assertion, but it turns out that one
can apply and check it in our situation; this is due to some rather special properties of the category
ShvNilp(BunG) established in [AGKRRV2], most notably, the categorical Künneth formula.

The fact that this criterion is satisfied for us follows from a certain geometric property of the initial
functor (0.6). Namely, this property says that the natural map

(0.8) (∆BunG,k)!(eBunG,k
)→ Sp((∆BunG,K)!(eBunG,K

)),

is an isomorphism, where:

• ∆Y denotes the diagonal morphism of a stack Y;
• eY denotes the constant sheaf on Y.

In its turn, the fact that (0.8) is an isomorphism is equivalent to the ULA property of
(∆BunG,R0

)!(eBunG,R0
) with respect to the projection BunG,R0 → Spec(R0).

We verify the required ULA property using the Drinfeld-Lafforgue-Vinberg compactification BunG

of the diagonal map of BunG.

0.3.6. Another technical result. We now mention another result, Theorem 1.1.7, established in this
paper, which is a crucial technical component for many other theorems that we prove.

Namely, Theorem 1.1.7 says that the category ShvNilp(BunG) is generated by objects that are
compact in the ambient category Shv(BunG).

This result was conjectured in [AGKRRV1]4, and it was proved in loc. cit. when the ground field
has characteristic 0. In this paper we deduce it in the positive characteristic case using the functor
(0.7).

0.4. Structure of the paper.

0.4.1. In Sect. 1 we construct the Langlands functor (0.2) and derive function-theoretic applications.

0.4.2. In Sect. 2 we prove that the functor (0.2) is an equivalence over a ground field of characteristic
0. Namely, we deduce this from the validity of the Betti version of GLC.

0.4.3. In Sect. 3 we stipulate the existence of the functor (0.6) with some specified properties and
deduce Theorem 0.1.4.

0.4.4. In Sect. 4 we construct the functor (0.6) and establish some of its expected properties.

0.4.5. In Sect. 5 we state Theorem 5.1.3, which says that (∆BunG,R0
)!(eBunG,R0

) is ULA and show how

this implies that the functor (0.7) is a Verdier quotient.

4This was used also as a hypothesis in [AGKRRV3] to show that the trace isomorphism Tr(Frob, ShvNilp(BunG)) ≃
Functc(BunG(Fq),Qℓ) reproduces the usual pointwise Frobenius map for constructible Weil sheaves.
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0.4.6. In Sect. 6 we prove the local acyclicity theorems responsible for the required properties of the
functor (0.6). There are four such theorems:

(i) Acyclicity of kernels defining Hecke functors. This is proved using (what essentially is) the Bott-
Samelson resolution;

(ii) Acyclicity of kernels defining Eisenstein functors. This is proved using local models, called Zastava
spaces.

(iii) Acyclicity of (∆BunG,R0
)!(eBunG,R0

). This is proved using local models for BunG, developed in [Sch].

(iv) Acyclicity of the vacuum Poincaré object PoincVac
!,R0

.

In the present section we prove the first three of these theorems. The proofs are based on the
contraction principle, formulated in Proposition 6.2.2.

0.4.7. In Sect. 7 we prove the acyclicity of the vacuum Poincaré object. We give two proofs. One is
shorter, but it uses an additional assumption on the interaction of the characteristic of the field with
g(X) and G.

The second proof uses a comparison between the !-Poincaré object PoincVac
! with its *-counterpart

PoincVac
∗ , expressed by Theorem 7.5.4.

0.4.8. In Sect. 8 we prove Theorem 7.5.4, which says that the cone of the natural map

PoincVac
! → PoincVac

∗

belongs to the full subcategory generated by the essential images of the Eisenstein functors for proper
parabolic subgroups.

Theorem 7.5.4 is of independent interest, and the proof that we give is useful as well: it consists
of studying what one may call the asymptotic behavior of the Whttaker sheaf as we degenerate the
character.

0.4.9. Finally, in Sect. 9 we revisit the topic of the interaction of the Langlands functor with Eisenstein
series.

So far we have not mentioned Eisenstein series in the introduction, but not surprisingly, they form
an integral part of the theory, and our ability to prove statements about the Langlands correspondence
often relies on having good control of the Eisenstein functor.

One particular aspect of this is the computation of the Whittaker coefficient of Eisenstein series,
which is performed in Theorem 9.2.7.

0.4.10. Notations and conventions. Notations and conventions in this paper are identical to those in
[GLC1].
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1. The Langlands functor for ℓ-adic sheaves

In this section we will work over a ground field k, assumed algebraically closed, but it may have
either positive characteristic or characteristic 0. Our sheaf theory Shv(−) (see [AGKRRV1, Sect. 1.1]

for what we mean by that) will be that of (ind-)constructible Qℓ-adic étale sheaves; so our field of

coefficients e is Qℓ.

On the geometric side, we consider the category ShvNilp(BunG), as defined in [AGKRRV1, Sect.
14.1].

On the spectral side we, we consider the category IndCohNilp(LS
restr
Ǧ ), as defined in [AGKRRV1,

Sect. 4.1].

The goal of this section is to construct a functor

Lrestr
G : ShvNilp(BunG)→ IndCohNilp(LS

restr
Ǧ )

and state some results and conjectures pertaining to its properties.

1.1. Coarse version of the functor.

1.1.1. We start by considering the object

PoincVac
! ∈ Shv(BunG)

c.

It is constructed by the procedure of [GLC1, Sect. 3.3] (see Sect. 7.1.1 below).

Remark 1.1.2. Note that when k has positive characteristic, PoincVac
! can be equivalently constructed

by the procedure of [GLC1, Sect. 1.3.7], replacing the exponential D-module by the Artin-Schreier
sheaf, see [GLC1, Remark 3.3.6].

1.1.3. Recall the functor

P : Shv(BunG)→ ShvNilp(BunG)

of [AGKRRV1, Sect. 15.4.5].

Denote:

PoincVac
!,Nilp := P(PoincVac

! ) ∈ ShvNilp(BunG).

1.1.4. Recall now that, according to [AGKRRV1, Theorem 14.3.2], the category ShvNilp(BunG) is
acted on by QCoh(LSrestr

Ǧ ).

We define the functor

Lrestr,L
G,temp : QCoh(LSrestr

Ǧ )→ ShvNilp(BunG)

to be given by the action of QCoh(LSrestr
Ǧ ) on PoincVac

!,Nilp.

We will prove:

Proposition 1.1.5. The functor Lrestr,L
G,temp preserves compactness.

The proof will be given in Sect. 1.6.

1.1.6. As stated, Proposition 1.1.5 says that the functor Lrestr,L
G,temp sends compacts to compacts, when

viewed as a functor with values in ShvNilp(BunG). The following assertion was stated as [AGKRRV1,
Conjecture 14.1.8]; we will prove it in this paper (see Sect. 3.1.12):

Theorem 1.1.7. The embedding

emb.Nilp : ShvNilp(BunG) ↪→ Shv(BunG)

preserves compactness.

Thus, Proposition 1.1.5, combined with Theorem 1.1.7, say that the functor Lrestr,L
G,temp, when viewed

as taking values in Shv(BunG), also preserves compactness.
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1.1.8. By Proposition 1.1.5, the functor Lrestr,L
G,temp admits a continuous right adjoint, which we will

denote by Lrestr
G,coarse.

The functor Lrestr,L
G,temp is QCoh(LSrestr

Ǧ )-linear by construction. Hence, the functor Lrestr
G,coarse acquires

a structure of right-lax linearity with respect to QCoh(LSrestr
Ǧ ).

Note, however, since QCoh(LSrestr
Ǧ ) is semi-rigid as a symmetric monoidal category (see [AGKRRV1,

Appendix C] for what this means), we obtain that the right-lax linear structure on Lrestr
G,coarse is actually

strict.

1.1.9. We will prove:

Theorem 1.1.10. The functor Lrestr
G,coarse sends compact objects in ShvNilp(BunG) to bounded below

(a.k.a. eventually coconnective) objects in QCoh(LSrestr
Ǧ ).

The proof of this theorem will be given in Sect. 1.7.

1.2. The Whittaker coefficient functor.

1.2.1. Let
coeffVac : Shv(BunG)→ Vect

be the functor co-represented by PoincVac
! .

When char(k) is positive, it is given by (9.6). A variant of this holds when char(k) = 0 using the
material in [GLC1, Sect. 3.3].

1.2.2. Recall the functor
Γ!(LS

restr
Ǧ ,−) : QCoh(LSrestr

Ǧ )→ Vect,

see [AGKRRV1, Sect. 7.7].

Remark 1.2.3. Explicitly, the functor Γ!(LS
restr
Ǧ ,−) fits into the commutative diagram

IndCoh(LSrestr
Ǧ )

(Υ
LSrestr

Ǧ

)∨

−−−−−−−−→ QCoh(LSrestr
Ǧ )

ΓIndCoh(LSrestr
Ǧ

,−)

y yΓ!(LSrestr
Ǧ

,−)

Vect
Id−−−−−→ Vect .

This diagram is valid for any laft formal algebraic stack. Note, however, that for quasi-smooth5

formal algebraic stacks (such as LSrestr
Ǧ ), the top horizontal arrow is a Verdier quotient.

1.2.4. We will prove:

Proposition 1.2.5. The composition

ShvNilp(BunG)
Lrestr
G,coarse−→ QCoh(LSrestr

Ǧ )
Γ!(LSrestr

Ǧ
,−)

−→ Vect

identifies canonically with

(1.1) ShvNilp(BunG)
emb.Nilp

↪→ Shv(BunG)
coeffVac

−→ Vect .

The proposition will be proved in Sect. 1.6.7.

Remark 1.2.6. Recall (see [AGKRRV1, Sect. 7.6.1]) that QCoh(LSrestr
Ǧ ) is canonically self-dual, so that

under this sel-fduality the object OLSrestr
Ǧ
∈ QCoh(LSrestr

Ǧ ) corresponds to the functor Γ!(LS
restr
Ǧ ,−). In

particular, a OLSrestr
Ǧ

-linear functor

C→ QCoh(LSrestr
Ǧ )

(for a QCoh(LSrestr
Ǧ )-linear category C) is uniquely recovered from the composition

C→ QCoh(LSrestr
Ǧ )

Γ!(LSrestr
Ǧ

,−)
−→ Vect .

5In fact, an appropriate eventual connectivity assumption suffices.
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From here here we obtain that Proposition 1.2.5 gives rise to the following characterization of the
functor Lrestr

G,coarse: it is the unique functor

ShvNilp(BunG)→ QCoh(LSrestr
Ǧ )

that satisfies:

• It is QCoh(LSrestr
Ǧ )-linear;

• Its composition with Γ!(LS
restr
Ǧ ,−) is isomorphic to (1.1).

1.3. Construction of the Langlands functor.

1.3.1. Let uspec denote the functor

(1.2) QCoh(LSrestr
Ǧ )

Υ
LSrestr

Ǧ≃ IndCoh{0}(LS
restr
Ǧ )

−⊗l
LSrestr

Ǧ≃ IndCoh{0}(LS
restr
Ǧ ) ↪→

↪→ IndCohNilp(LS
restr
Ǧ ),

where:

• The first arrow is given by tensoring by the dualizing sheaf ωLSrestr
Ǧ

; of LSrestr
Ǧ ;

• lLSrestr
Ǧ

is the graded line bundle6 det(T ∗(LSrestr
Ǧ )−1)[−2(g − 1) dim(G)].

In what follows we will denote the composition of the first two arrows in (1.2) by ΞLSrestr
Ǧ

. This is

a functor that makes sense for any quasi-smooth formal scheme (resp., algebrac stack) Z. If Z is an
actual scheme (resp., algebraic stack), then ΞZ is the tautological functor

QCoh(Z) ↪→ IndCoh(Z),

whose essential image is IndCoh{0}(Z).

Remark 1.3.2. We use the notation uspec,R, rather than the more common one, namely, ΨNilp,{0}, in
order to avoid the clash with the symbol for the nearby cycles functor.

Remark 1.3.3. The second arrow in (1.2) is introduced in order to make this functor compatible with
the one in the de Rham and Betti versions. Note also that LSrestr

Ǧ is symplectic (the symplectic structure
is constructed using a choice of an invariant form on ǧ) of dimension [2(g− 1) dim(G)]. Hence, the line
bundle det(T ∗(LSrestr

Ǧ )) is canonically constant.

1.3.4. The functor uspec preserves compactness and is fully faithful. Let uspec,R denote its right
adjoint.

The functor uspec is QCoh(LSrestr
Ǧ )-linear by construction. Hence, the functor uspec,R acquires a

right-lax linear structure. By the semi-rigidity of QCoh(LSrestr
Ǧ ), this right-lax structure is actually

strict.

1.3.5. From Theorem 1.1.10, as in [GLC1, Corollary 1.6.5], we obtain:

Corollary 1.3.6. There exists a continuous functor

Lrestr
G : ShvNilp(BunG)→ IndCohNilp(LS

restr
Ǧ ),

uniquely characterized by the following properties:

(i) The functor Lrestr
G sends compact objects in ShvNilp(BunG) to eventually coconnective objects in

IndCohNilp(LS
restr
Ǧ ), i.e., to IndCohNilp(LS

restr
Ǧ )>−∞;

(ii) (uspec)R ◦ Lrestr
G ≃ Lrestr

G,coarse.

Furthermore, as in [GLC1, Proposition 1.7.2], we obtain:

Lemma 1.3.7. The functor Lrestr
G carries a unique QCoh(LSrestr

Ǧ )-linear structure, so that the induced

QCoh(LSrestr
Ǧ )-linear structure on (uspec)R ◦ Lrestr

G is the natural QCoh(LSrestr
Ǧ )-linear structure on

Lrestr
G,coarse.

6In fact, this line bundle is constant, i.e., is essentially a graded line over e, see Remark 1.3.3 below.
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1.3.8. We are now ready to state the main result of this paper:

Main Theorem 1.3.9.

(i) The functor Lrestr
G factors via an equivalence

ShvNilp(BunG)
∼→ IndCohNilp(

′LSrestr
Ǧ ) ↪→ IndCohNilp(

′LSrestr
Ǧ )

where ′LSrestr
Ǧ is the union of some of the connected components of LSrestr

Ǧ .

(ii) If char(k) = 0, then the inclusion ′LSrestr
Ǧ ⊂ LSrestr

Ǧ is an equality.

(iii) For any k and G = GLn, the inclusion ′LSrestr
Ǧ ⊂ LSrestr

Ǧ is an equality.

Of course, we believe that the statement of Theorem 1.3.9(i) can be strengthened:

Conjecture 1.3.10. The inclusion ′LSrestr
Ǧ ⊂ LSrestr

Ǧ is always as equality.

1.4. Langlands functor and Eisenstein series.

1.4.1. Let P− be a standard (negative) parabolic in G and let M be its Levi quotient. Consider the
Eisenstein functor

Eis−! : Shv(BunM )→ Shv(BunG),

see [GLC3, Sect. 8.1].

Note that according to the conventions of [GLC3, Sect. 8.1.3], the definition of Eis−! includes a
cohomological shift, see (9.7).

We claim:

Proposition 1.4.2. The functor Eis−! sends ShvNilp(BunM ) to ShvNilp(BunG).

Remark 1.4.3. The proof given below uses a spectral description of the subcategory ShvNilp(BunG).
One can, however, give a purely geometric argument proving Proposition 1.4.2: Namely, one can
estimate the singular support of objects of the form Eis−! (F) using the following assertion:

The singular support of ȷ!(eBun
P−

) ∈ Shv(BunP−) is contained in the union of the conormal of the

strata (for the natural stratification of BunP−).

This assertion can be proved using Zastava spaces in a way similar to the manipulation involved in
the proof of Theorem 4.4.5 below.

Proof. Let Z be a prestack over e mapping to LSrestr
M̌ . Let

Hecke(Z,Shv(BunM ))

be the corresponding category of Hecke eigensheaves, see [AGKRRV1, Sect. 15.2].

Recall that according to [BG2] (the case of P = B) and its generalization to an arbitrary parabolic
in [FH, Theorem 1.6.5.2], the functor

(1.3) Hecke(Z,Shv(BunM ))
oblvHecke−→ QCoh(Z)⊗ Shv(BunM )

Id⊗Eis−
!−→ QCoh(Z)⊗ Shv(BunG)

factors canonically as

(1.4) Hecke(Z, Shv(BunM ))
(q−,spec)∗⊗Id−→ Hecke(LSrestr

P̌− ×
LSrestr

M̌

Z, Shv(BunM ))
Hecke(Z,Eis−

!
)

−→

→ Hecke(LSrestr
P̌− ×

LSrestr
M̌

Z, Shv(BunG))
oblvHecke−→ QCoh(LSrestr

P̌− ×
LSrestr

M̌

Z)⊗ Shv(BunG)
(q−,spec)∗⊗Id−→

→ QCoh(Z)⊗ Shv(BunG).

Take Z = LSrestr
M̌ , and recall that in this case the composition

(1.5) Hecke(LSrestr
M̌ ,Shv(BunM ))

oblvHecke−→ QCoh(LSrestr
M̌ )⊗ Shv(BunM )

Γ!(LSrestr
M̌

,−)⊗Id
−→ Shv(BunM )

is fully faithful with essential image ShvNilp(BunM ) (see [AGKRRV1, Proposition 15.5.3(a)]).
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Under the identification (1.5), the original functor Eis−! identifies with the composition of (1.4) with

QCoh(LSrestr
M̌ )⊗ Shv(BunG)

Γ!(LSrestr
M̌

,−)⊗Id
−→ Shv(BunG).

The desired assertion follows now from the fact that for any Z′, the inclusion

Hecke(Z′, ShvNilp(BunG)) ↪→ Hecke(Z′,Shv(BunG))

is an equality, see again [AGKRRV1, Proposition 15.5.3(a)].
□

1.4.4. Consider the diagram

LSrestr
Ǧ

p−,spec

←− LSrestr
P̌−

q−,spec

−→ LSrestr
M̌ ,

where we note that the morphism q−,spec is a relative algebraic stack and is quasi-smooth.

The spectral Eisenstein functor

Eis−,spec : IndCoh(LSrestr
M̌ )→ IndCoh(LSrestr

Ǧ ).

is defined to be

(p−,spec)IndCoh
∗ ◦ (q−,spec)IndCoh,∗.

As in [AG1, Proposition 13.2.6], one shows that the functor Eis−,spec sends

IndCohNilp(LS
restr
M̌ )→ IndCohNilp(LS

restr
Ǧ ).

1.4.5. In Sect. 9 we will prove:

Theorem 1.4.6. The diagram

(1.6)

ShvNilp(BunM )
Lrestr
M−−−−−→ IndCohNilp(LS

restr
M̌ )

Eis−
!,ρP (ωX )

[δ
(N
−
P

)ρP (ωX )
]
y yEis−,spec

ShvNilp(BunG) −−−−−→
Lrestr
G

IndCohNilp(LS
restr
Ǧ )

commutes, where:

• The functor Eis−!,ρP (ωX ) is the precomposition of Eis−! with the translation functor by ρP (ωX) ∈
BunZM ;

• δ
(N−

P
)ρP (ωX )

= dim(Bun
(N−

P
)ρP (ωX )

), see [GLC3, Theorem 10.1.2].

1.5. Consequences for the classical theory of automorphic functions.

1.5.1. We now specialize to the case when k = Fq, but X and G (and hence also BunG) are defined
over Fq. The stack LSrestr

Ǧ carries an automorphism induced by the geometric Frobenius on X.

The following assertion was stated in [AGKRRV1] as a corollary of loc. cit., Conjecture 24.6.9, and
the latter was proved in [BLR, Sect. 6.4.13]:

Theorem 1.5.2. The inclusion

IndCohNilp(LS
restr
Ǧ ) ↪→ IndCoh(LSrestr

Ǧ )

induces an isomorphism

Tr(Frob, IndCohNilp(LS
restr
Ǧ ))

∼→ Tr(Frob, IndCoh(LSrestr
Ǧ )).
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1.5.3. A standard computation implies that

Tr(Frob, IndCoh(LSrestr
Ǧ )) ≃ ΓIndCoh((LSrestr

Ǧ )Frob, ω(LSrestr
Ǧ

)Frob).

Recall the notation
LSarithm

Ǧ := (LSrestr
Ǧ )Frob.

According to [AGKRRV1, Theorem 24.1.4], LSarithm
Ǧ is a quasi-compact algebraic stack locally al-

most of finite type.

Hence, Theorem 1.5.2 implies that we have a canonical isomorphism

(1.7) Tr(Frob, IndCohNilp(LS
restr
Ǧ )) ≃ Γ(LSarithm

Ǧ , ωLSarithm
Ǧ

),

where by a slight abuse of notation, we denote by the same symbol

ωLSarithm
Ǧ

∈ QCoh(LSarithm
Ǧ )

the image of

ωLSarithm
Ǧ

∈ IndCoh(LSarithm
Ǧ )

under the functor
(ΥLSarithm

Ǧ
)∨ : IndCoh(LSarithm

Ǧ )→ QCoh(LSarithm
Ǧ ).

1.5.4. Let
′LSrestr

Ǧ ⊂ LSrestr
Ǧ

be as in Theorem 1.3.9(i). This is a Frob-invariant substack. Set

′LSarithm
Ǧ := (′LSrestr

Ǧ )Frob.

It formally follows from Theorem 1.5.2 that we have

(1.8) Tr(Frob, IndCohNilp(
′LSrestr

Ǧ )) ≃ Γ(′LSarithm
Ǧ , ω′LSarithm

Ǧ
).

1.5.5. Combining isomorphism (1.8) with Theorem 1.3.9(i) and [AGKRRV3, Theorem 0.2.6], we ob-
tain:

Corollary 1.5.6. There exists a canonical isomorphism

Functc(BunG(Fq),Qℓ) ≃ Γ(′LSarithm
Ǧ , ω′LSarithm

Ǧ
).

1.5.7. From Corollary 1.5.6 we obtain the following:

Corollary 1.5.8. Let G be semi-simple, and let σ be an irreducible Weil Ǧ-local system. Then the space
of automorphic functions on which the algebra of excursion operators acts by the character corresponding
to σ is at most one-dimensional (and in the latter case is spanned by a cuspidal function).

Proof. Recall that by [AGKRRV1, Theorem 24.1.6], an irreducible local system σ gives rise to a con-
nected component LSarithm

Ǧ,σ isomorphic to pt /Aut(σ), where Aut(σ) is a finite group. In particular7,

ωLSarithm
Ǧ,σ

≃ OLSarithm
Ǧ,σ

.

Recall now that the excursion algebra identifies with

H0(Γ(LSarithm
Ǧ ,OLSarithm

Ǧ
)).

The map

LSarithm
Ǧ,σ → Spec(Γ(LSarithm

Ǧ ,OLSarithm
Ǧ,σ

)),

induced by

LSarithm
Ǧ → Spec(Γ(LSarithm

Ǧ ,OLSarithm
Ǧ

)),

7Note also that LSarithm
Ǧ

is canonically Calabi-Yau, i.e., the determinant line bundle of its cotangent bundle is

trivialized. Hence, the restriction of ω
LSarithm

Ǧ

to the quasi-smooth locus of LSarithm
Ǧ

is canonically isomorphic to the

restriction of O
LSarithm

Ǧ

.
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identifies with

pt /Aut(σ)→ pt .

This makes the assertion obvious.
□

Remark 1.5.9. If Conjecture 1.3.10 holds, then ′LSarithm
Ǧ is all of LSarithm

Ǧ .

In particular, in this case in Corollary 1.5.8, the corresponding eigenspace is exactly one-dimensional.

1.6. Proof of Propositions 1.1.5 and 1.2.5.

1.6.1. Write LSrestr
Ǧ as a union of its connected components

LSrestr
Ǧ = ⊔

α
Zα.

As in [AGKRRV1, Sect. 21.1], we can write each Zα as a (countable) colimit

Zα ≃ colim
n

Zα,n,

where:

• Each Zα,n is a quasi-smooth algebraic stack;

• Each iα,n : Zα,n → Zα is a regular closed embedding that induces an isomorphism at the
reduced level.

1.6.2. The category QCoh(Zα) is compactly generated by objects of the form

(iα,n)∗(OZα,n)⊗ E,

where E is a dualizable object in QCoh(LSrestr
Ǧ ).

In fact, we can take E to be the pullback of a vector bundle under the evaluation map

evx : LSrestr
Ǧ → pt /Ǧ

corresponding to some chosen point x ∈ X.

1.6.3. We now begin the proof of Proposition 1.1.5.

In the above notations, it suffices to show that the functor Lrestr,L
G,temp sends each (iα,n)∗(OZα,n) to a

compact object of ShvNilp(BunG).

1.6.4. Consider the category

QCoh(Zα,n) ⊗
QCoh(LSrestr

Ǧ
)
ShvNilp(BunG).

We have a pair of QCoh(LSrestr
Ǧ )-linear functors

((iα,n)∗ ⊗ Id) : QCoh(Zα,n) ⊗
QCoh(LSrestr

Ǧ
)
ShvNilp(BunG)⇄ ShvNilp(BunG) : ((iα,n)

! ⊗ Id).

1.6.5. Let

Penh
Zα,n

: Shv(BunG)→ QCoh(Zα,n) ⊗
QCoh(LSrestr

Ǧ
)
ShvNilp(BunG).

be as in [AGKRRV1, Sect. 15.3.2]. I.e., this is the left adjoint to forgetful functor

QCoh(Zα,n) ⊗
QCoh(LSrestr

Ǧ
)
ShvNilp(BunG)

((iα,n)∗⊗Id)
−→ ShvNilp(BunG)

emb.Nilp
↪→ Shv(BunG),

see [AGKRRV1, Corollary 13.5.4].

Unwinding the construction (see [AGKRRV1, Sect. 15]), we obtain that

Lrestr,L
G,temp((iα,n)∗(OZα,n)) ≃ ((iα,n)∗ ⊗ Id)(Penh

Zα,n
(PoincVac

! )).
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1.6.6. Now the object Penh
Zα,n

(PoincVac
! ) is compact in QCoh(Zα,n) ⊗

QCoh(LSrestr
Ǧ

)
ShvNilp(BunG) (being

the value of a left adjoint on a compact object).

Finally, the functor (iα,n)∗ ⊗ Id preserves compactness since it admits a continuous right adjoint.
□[Proposition 1.1.5]

1.6.7. Proof of Proposition 1.2.5. Note that

Γ!(QCoh(LSrestr
Ǧ ,−) ≃ ⊕

α
Γ!(Zα, (−)|Zα),

while the functor

Γ!(Zα,−) : QCoh(Zα)→ Vect

can be written as

colim
n

HomQCoh(LSrestr
Ǧ

)((iα,n)∗(OZα,n),−).

Thus, we can rewrite the composition

ShvNilp(BunG)
Lrestr
G,coarse−→ QCoh(LSrestr

Ǧ )
Γ!(Zα,−)−→ Vect

as

colim
n

HomShvNilp(BunG)((iα,n)∗(OZα,n),L
restr
G,coarse(−)),

and hence by adjunction as

colim
n

HomShvNilp(BunG)(Lrestr,L
G,temp ◦ (iα,n)∗(OZα,n),−).

By Sect. 1.6.5, we can rewrite the latter expression as

colim
n

HomShvNilp(BunG)

(
((iα,n)∗ ⊗ Id)(Penh

Zα,n
(PoincVac

! )),−
)
,

and further as

colim
n

HomQCoh(Zα,n) ⊗
QCoh(LSrestr

Ǧ
)

ShvNilp(BunG)

(
Penh
Zα,n

(PoincVac
! ), ((iα,n)

! ⊗ Id)(−)
)
,

and again by adjunction

colim
n

HomShv(BunG)

(
PoincVac

! , emb.Nilp ◦((iα,n)∗ ⊗ Id) ◦ ((iα,n)
! ⊗ Id)(−)

)
.

Since PoincVac
! is compact, the latter expression identifies with

HomShv(BunG)

(
PoincVac

! , emb.Nilp
(
colim

n
((iα,n)∗ ⊗ Id) ◦ ((iα,n)

! ⊗ Id)(−)
))

.

The required assertion follows now from the fact that the natural transformation

⊕
α
colim

n
((iα,n)∗ ⊗ Id) ◦ ((iα,n)

! ⊗ Id)→ Id

on ShvNilp(BunG) is an isomorphism.
□[Proposition 1.2.5]

1.7. Proof of Theorem 1.1.10. The proof will largely follow [GLC1, Sect. 2].

1.7.1. For the proof we will assume the validity of Theorem 1.1.7, which will be proved independently.

Assuming this theorem and using [GLC2, Sect. 2.2], we obtain that if M ∈ ShvNilp(BunG) is
compact, then

emb.Nilp(M) ∈ Shv(BunG)

is bounded below.

Hence, it is enough to show that the functor Lrestr
G,coarse has a cohomological amplitude bounded on

the left, i.e., there exists an integer d such that Lrestr
G,coarse[−d] is left t-exact.
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1.7.2. Choose a point x ∈ X, and set

LS
restr,rigidx

Ǧ
:= LSrestr

Ǧ ×
pt /Ǧ

pt,

where LSrestr
Ǧ → pt /Ǧ is the evaluation map evx.

According to [AGKRRV1, Theorem 1.6.3], the prestack LS
restr,rigidx

Ǧ
is a disjoint union of formal

affine schemes. In particular, the functor

Γ!(LS
restr,rigidx

Ǧ
,−) : QCoh(LS

restr,rigidx

Ǧ
)→ Vect

is t-exact and conservative.

1.7.3. Note also that we have a canonical isomorphism

Γ!(LS
restr,rigidx

Ǧ
, π∗(−)) ≃ Γ!(LS

restr
Ǧ , ev∗x(RǦ)⊗ (−)),

where:

• πv denotes the projection LS
restr,rigidx

Ǧ
→ LSrestr

Ǧ ;

• RǦ ∈ Rep(Ǧ) ≃ QCoh(pt /Ǧ) is the regular representation.

Hence, we obtain that it is enough to show that the functors

Γ!

(
LSrestr

Ǧ , ev∗x(V )⊗ Lrestr
G,coarse(−)

)
, V ∈ Rep(Ǧ)♡.

have cohomological amplitudes uniformly bounded on the left.

1.7.4. By Proposition 1.2.5, we rewrite the above functor as

(1.9) coeffVac ◦HV,x(−),

where HV,x is the Hecke endofunctor of Shv(BunG) corresponding to the chosen x and V .

We will show that the functors (1.9) (for V ∈ Rep(Ǧ)) have cohomological amplitudes uniformly
bounded on the left on all of Shv(BunG) (and not just ShvNilp(BunG)).

1.7.5. Consider the tempered subcategory

Shv(BunG)temp
u
↪→ Shv(BunG)

as defined in [FR, Sect. 7] (using the choice of x ∈ X). The embedding u admits a continuous right
adjoint, denoted uR.

The category Shv(BunG)temp carries a uniquely defined t-structure for which the functor uR is
t-exact, see [FR, Sect. 7.2].

Another key feature of this t-structure is that the Hecke functors HV,x descend to Shv(BunG)temp

and are t-exact on it (for V ∈ Rep(Ǧ)♡), see [FR, Theorem 7.1.0.1].

1.7.6. Note that since PoincVac
! ∈ Shv(BunG)temp, the functor coeffVac factors canonically as

Shv(BunG)
uR

→ Shv(BunG)temp

coeffVac
temp−→ Vect .

Hence, it is enough to show that the functors

coeffVac
temp ◦HV,x(−) : Shv(BunG)temp → Vect

have cohomological amplitudes uniformly bounded on the left.
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1.7.7. By the t-exactness of the Hecke action on Shv(BunG)temp, it suffices to show that the functor

coeffVac
temp : Shv(BunG)temp → Vect

has a cohomological amplitude bounded on the left.

This is in turn equivalent to the functor

coeffVac : Shv(BunG)→ Vect

having a cohomological amplitude bounded on the left, which is obvious.
□[Theorem 1.1.10]

2. Proof of Theorem 1.3.9 in characteristic 0

In this section we will show that when char(k) = 0, the functor

ShvNilp(BunG)
Lrestr
G→ IndCohNilp(LS

restr
Ǧ )

is an equivalence.

2.1. Constructible Betti geometric Langlands. In this subsection we take k to be the field of com-
plex numbers C, and we will work with the sheaf theory denoted ShvBetti,constr(−) of (ind-)constructible
Betti sheaves with coefficients in an arbitrary field e of characteristic 0.

2.1.1. Let LSBetti,restr

Ǧ
be the moduli space of local systems with restricted variation, defined using the

constructible sheaf theory ShvBetti,constr(−).
The material in Sects. 1.1-1.4 applies verbatim and we obtain a functor

LBetti,restr
G : ShvBetti,constr

Nilp (BunG)→ IndCohNilp(LS
Betti,restr

Ǧ
).

2.1.2. We claim:

Theorem 2.1.3. The functor LBetti,restr
G is an equivalence.

Proof. The above functor LBetti,restr
G is the same as the functor denoted by the same symbol in [GLC1,

Sect. 3.5.3].

Now the assertion follows from the validity of the full de Rham version of the geometric Langlands
conjecture (proved in [GLC5]) combined with [GLC1, Theorem 3.5.6].

□

2.2. Betti vs étale comparison. In this subsection we continue to assume that k = C, and we will
take e := Qℓ. We will work with two sheaf theories:

One is Shvet(−) =: Shv(−) of (ind-)constructible Qℓ-adic étale sheaves, considered in Sect. 1.

The other is ShvBetti,constr(−) considered in Sect. 2.1 above.

We will show that the validity of Theorem 2.1.3 implies the validity of Theorem 1.3.9(ii) (for k = C).

2.2.1. Note that we have a fully faithful natural transformation between the sheaf theories

(2.1) (et→ Betti) : Shvet(−)→ ShvBetti,constr(−)
that commutes with both !- and *- direct and inverse images, see [SGA4(3), Theorems XI.4.4, XVI.4.1
and XVII.5.3.3].

At the level of compact objets (i.e., constructible sheaves) on affine schemes, its essential image is
characterized as follows:

Let F be an object of ShvBetti,constr(Y )c, and let Yα be a decomposition of Y into smooth locally
closed subsets, such that the restrictions (either *- or !-) of F to the strata are lisse. Consider the
individual cohomology sheaves Hi(F|Yα) as representations Vα,i of π1(Yα) (for some chosen base point).

Then F lies in the essential image of (et→ Betti))Y if and only if each Vα,i admits a π1(Yα)-invariant

lattice with respect to OE ⊂ E ⊂ Qℓ for a finite extension E ⊇ Qℓ.
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2.2.2. In particular, the natural transformation (2.1) induces a fully faithful functor

(et→ Betti)BunG : Shvet(BunG)→ ShvBetti,constr(BunG),

which restricts to a (fully faithful) functor

Shvet
Nilp(BunG)→ ShvBetti,constr

Nilp (BunG).

2.2.3. Recall that Theorem 1.1.7 has been proved for

ShvBetti,constr
Nilp (BunG) ↪→ ShvBetti,constr(BunG)

in [AGKRRV1, Theorem 16.4.10]. Hence, it holds for

Shvet
Nilp(BunG) ↪→ Shvet(BunG)

as well.

2.2.4. Let

LSet,restr

Ǧ
and LSBetti,restr

Ǧ

be the two versions of the be the moduli space of local systems with restricted variation.

The functor

(et→ Betti)X : QLisseet(X)→ QLisse(X)Betti,constr

is symmetric monoidal, and hence induces a map between the corresponding moduli spaces

(2.2) (et→ Betti)LSǦ
: LSet,restr

Ǧ
→ LSBetti,restr

Ǧ
.

We claim:

Lemma 2.2.5. The map (2.2) factors through an isomorphism from LSet,restr

Ǧ
to the disjoint union of

some of the connected components of LSBetti,restr

Ǧ
.

Proof. Follows from the description of essential image of the natural transformation (2.1) in Sect. 2.2.1,
see [AGKRRV1, Sect. 9.5.8].

□

Remark 2.2.6. An assertion parallel to Lemma 2.2.5 holds for any full symmetric monoidal subcategory
of Lisse(X)♡.

2.2.7. Thus, we can regard

QCoh(LSet,restr

Ǧ
) ⊗
QCoh(LS

Betti,restr

Ǧ
)

ShvBetti,constr
Nilp (BunG)

as a full subcategory (in fact, a direct summand) of ShvBetti,constr
Nilp (BunG), and it is easy to see that the

functor

(et→ Betti)BunG : Shvet
Nilp(BunG)→ ShvBetti,constr

Nilp (BunG)

lands in it: this follows from the fact that this functor is compatible with the actions of QCoh(LSet,restr

Ǧ
),

viewed as a direct factor of QCoh(LSBetti,restr

Ǧ
on the two sides.

Similarly, direct image along (et→ Betti)LSǦ
is an equivalence

IndCohNilp(LS
et,restr

Ǧ
)
∼→ QCoh(LSet,restr

Ǧ
) ⊗
QCoh(LS

Betti,restr

Ǧ
)

IndCohNilp(LS
restr
Ǧ ).
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Furthermore, it follows from Proposition 1.2.5 that we have a commutative diagram

Shvet
Nilp(BunG)

(et→Betti)BunG−−−−−−−−−−→ QCoh(LSet,restr

Ǧ
) ⊗
QCoh(LS

Betti,restr

Ǧ
)

ShvBetti,constr
Nilp (BunG)

Let,restr
G

y ∼
yId⊗LBetti,restr

G

IndCohNilp(LS
et,restr

Ǧ
)

(et→Betti)LS
Ǧ−−−−−−−−−−→

∼
QCoh(LSet,restr

Ǧ
) ⊗
QCoh(LS

Betti,restr

Ǧ
)

IndCohNilp(LS
Betti,restr

Ǧ
),

in which the top horizontal arrow is fully faithful.

Hence, we obtain that the functor Let,restr
G is fully faithful. Thus, in order to prove that it is an

equivalence, it remains to show that the essential image of Let,restr
G generates the target.

2.2.8. Write

Let,restr
G = (Let,restr

G )red ⊔ (Let,restr
G )irred;

these are unions of connected components that correspond to reducible (resp., irreducible) local systems.

It suffices to show that the essential image of each of the corresponding functors

QCoh((Let,restr
G )red) ⊗

QCoh(LS
et,restr

Ǧ
)

Shvet
Nilp(BunG)

Id⊗Let,restr
G−→

→ QCoh((Let,restr
G )red) ⊗

QCoh(LS
et,restr

Ǧ
)

IndCohNilp(LS
et,restr

Ǧ
) ≃ IndCohNilp((LS

et,restr

Ǧ
)red)

and

QCoh((Let,restr
G )irred) ⊗

QCoh(LS
et,restr

Ǧ
)

Shvet
Nilp(BunG)

Id⊗Let,restr
G−→

→ QCoh((Let,restr
G )irred) ⊗

QCoh(LS
et,restr

Ǧ
)

IndCohNilp(LS
et,restr

Ǧ
) ≃ IndCohNilp((LS

et,restr

Ǧ
)irrred)

generates its target category.

This is in turn equivalent to showing that the essential image of the each of the functors

(2.3) Shvet
Nilp(BunG)

Let,restr
G−→ IndCohNilp(LS

et,restr

Ǧ
)

restriction−→ IndCohNilp((LS
et,restr

Ǧ
)red)

and

(2.4) Shvet
Nilp(BunG)

Let,restr
G−→ IndCohNilp(LS

et,restr

Ǧ
)

restriction−→ IndCohNilp((LS
et,restr

Ǧ
)irred)

generates the target category.

2.2.9. We first prove the assertion for (2.3). By induction on the semi-simple rank, we may assume
that Theorem 1.3.9(ii) holds for proper Levi subgroups of G.

Note that8 by [AG1, Theorem 13.3.6], the union of the essential images of the functors

Eis−,spec : IndCohNilp(LS
et,restr

M̌
)→ IndCohNilp(LS

et,restr

Ǧ
)

for proper Levi subgroups generates IndCohNilp((LS
et,restr

Ǧ
)red), viewed as a full subcategory in

IndCohNilp(LS
et,restr

Ǧ
).

Hence, the required generation assertion follows from Theorem 1.4.6.

8In loc. cit. this is proved in the de Rham context, but the argument applies in any sheaf-theoretic context.
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2.2.10. We now show that (2.4) generates the target category. Note that the functor uspec (see
Sect. 1.3.1) induces an equivalence

QCoh((LSet,restr

Ǧ
)irred)→ IndCohNilp((LS

et,restr

Ǧ
)irred).

Hence, it is enough to show that the essential image of the functor

Shvet
Nilp(BunG)

Let,restr
G,coarse−→ QCoh(LSet,restr

Ǧ
)

restriction−→ QCoh((LSet,restr

Ǧ
)irred)

generates the target category.

We will show that the essential image of the functor Let,restr
G,coarse itself generates the target category.

First, we note that this functor is fully faithful (indeed, our situation embeds fully faithfully into the
Betti situation, where the functor in question is an equivalence). Hence, it is enough to show that its

left9 adjoint, i.e., the functor Let,restr,L
G,temp , is conservative.

Note, however, that the diagram

Shvet
Nilp(BunG)

Let,restr,L
G,temp←−−−−−− QCoh(LSet,restr

Ǧ
)

(et→Betti)BunG

y y(et→Betti)LS
Ǧ

ShvBetti,constr
Nilp (BunG)

LBetti,restr,L
G,temp←−−−−−−−−
∼

QCoh(LSBetti,restr

Ǧ
)

is commutative: indeed, the two circuits are compatible with the spectral action QCoh(LSet,restr

Ǧ
)

(which we think as a direct factor of QCoh(LSBetti,restr

Ǧ
)) and send O

LS
et,restr

Ǧ

to (the Betti version of)

PoincVac
!,Nilp.

Since the right vertical arrow in the diagram is conservative, and the bottom horizontal arrow is an
equivalence, we obtain that the top horizontal arrow is conservative, as required.

□[Theorem 1.3.9(ii) for k = C]

2.3. Proof of Theorem 1.3.9(ii) for an arbitrary k of char. 0. The proof will use the Lefschetz
principle.

2.3.1. Note that if k1 ⊂ k2 is an extension of algebraically closed fields of characteristic 0, for a
prestack Z1 over k1 and its base change Z2 to k2, the pullback functor

(2.5) Lisse(Z1)→ Lisse(Z2)

is an equivalence, see [SGA1, Proposition XIII.4.3].

This formally implies that the pullback functor

Shv(Z1)→ Shv(Z2)

is fully faithful.

Let N1 ⊂ T ∗(Z1) be a conical Lagrangian subset. It follows from (2.5) that the pullback functor

ShvN1(Z1)→ ShvN2(Z2)

is an equivalence.

2.3.2. In particular, for a curve X1 defined over k1, and its base change X2 to k2, the map

LSrestr
Ǧ (X1)→ LSrestr

Ǧ (X2)

is an isomorphism (as prestacks over Qℓ).

9Note that without fully faithfulness, generation of the target is equivalent to the fact that the right adjoint be
consevative.
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2.3.3. Given the curve X over k, let k′ be a countably generated field over which it is defined; denote
the resulting curve over k′ by X ′.

We obtain a commutative diagram

ShvNilp(BunG(X
′))

Lrestr
G (X′)
−−−−−−→ IndCohNilp(LS

restr
Ǧ (X ′))

∼
y y∼

ShvNilp(BunG(X))
Lrestr
G (X)
−−−−−−→ IndCohNilp(LS

restr
Ǧ (X)).

Hence, the validity of Theorem 1.3.9(ii) over k is equivalent to its validity over k′.

2.3.4. Embedding k′ into C, we obtain that the validity of Theorem 1.3.9(ii) over k′ is equivalent to
its validity over C. However, the latter has been established in Sect. 2.2 above.

□[Theorem 1.3.9(ii)]

3. The specialization functor

In this section we introduce a procedure that will allow us to deduce information about the Langlands
functor in characteristic p from its counterpart in characteristic 0.

This procedure essentially amounts to taking nearby cycles for a family of curves over a DVR.

3.1. Axiomatics for the functor.

3.1.1. Let k be an (algebraically closed) field of positive characteristic. Let R0 := Witt(k) be the ring
of Witt vectors of k, let K0 denote the field of fractions of R0 and let K denote the algebraic closure of
K0. Let R denote the integral closure of R0 in K.

Given a (smooth complete) curve Xk over k, we can choose its extension to a (smooth complete)
curve XR0 over Spec(R0). Let XK be the base change of XR0 to K.

3.1.2. Notational convention. We will insert subscripts k, R0 or K into the corresponding geometric
objects in order to specify which situation we are working with.

A symbol without such a subscript (e.g., just BunG) means that the discussion applies to any of the
above situations.

3.1.3. Note that restriction along Xk → XR0 defines an equivalence

QLisse(XR0) ≃ QLisse(Xk).

Restriction along XK → XR0 defines a fully faithful functor

QLisse(XR)→ QLisse(XK).

From here we obtain an embedding

LSrestr
Ǧ,k

ι
↪→ LSrestr

Ǧ,K ,

which identifies LSrestr
Ǧ,k with the union of some of the connected components of LSrestr

Ǧ,K .

3.1.4. Consider the corresponding moduli stacks

BunG,k and BunG,K .

Consider the full subcategory (in fact, a direct summand)10

ShvNilp(BunG,K,k) := QCoh(LSrestr
Ǧ,k ) ⊗

QCoh(LSrestr
Ǧ,K

)
ShvNilp(BunG,K) ⊂ ShvNilp(BunG,K).

10We emphasize that there is no such object as Shv(BunG,K,k); only ShvNilp(BunG,K,k).
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3.1.5. We will prove:

Theorem 3.1.6. There exists a functor

(3.1) SpK→k : ShvNilp(BunG,K,k)→ ShvNilp(BunG,k)

with the following properties:

• (A) The functor SpK→k is a Verdier quotient.

• (B) The functor SpK→k intertwines the actions of QCoh(LSrestr
Ǧ,k ).

• (C) The functor SpK→k sends PoincVac
!,Nilp,K,k to PoincVac

!,Nilp,k, where PoincVac
!,Nilp,K,k is the direct

summand of PoincVac
!,Nilp,K that belongs to ShvNilp(BunG,K,k).

• (D) The functor SpK→k makes the diagrams

ShvNilp(BunM,K,k)
SpK→k,M−−−−−−→ ShvNilp(BunM,k)

Eis−
!,K

y yEis−
!,k

ShvNilp(BunG,K,k)
SpK→k,G−−−−−−→ ShvNilp(BunG,k)

commute.

• (E) The functor SpK→k is t-exact.

This theorem will be proved in the course of Sects. 5-8. For the rest of this section we will assume
Theorem 3.1.6. We will derive some further properties of the functor SpK→k of (3.1), as well as
consequences for the category ShvNilp(BunG,k) that follow from the above properties.

3.1.7. We claim that the functor SpK→k of (3.1) preserves compactness.

Indeed, the validity of Theorem 1.3.9 for K implies that the category ShvNilp(BunG,K,k) has compact
generators of the form:

(i) E ⋆ PoincVac
!,Nilp,K,k, where E is a dualizable object in QCoh(LSrestr

Ǧ,k );

(ii) Eis−! (FM ) for FM ∈ ShvNilp(BunM,K,k)
c.

Now, objects of the form

SpK→k(E ⋆ PoincVac
!,Nilp,K,k)

are compact in ShvNilp(BunG,k) by Properties (B) and (C), and objects of the form

SpK→k(Eis
−
! (FM ))

are compact in ShvNilp(BunG,k) by Property (D) and induction on semi-simple rank.

3.1.8. Note that combining with Property (A), we obtain:

Corollary 3.1.9. Objects of the form

(i) E ⋆ PoincVac
!,Nilp,k, E is a dualizable object in QCoh(LSrestr

Ǧ,k );

(ii) Eis−! (FM ), FM ∈ ShvNilp(BunM,k)
c

compactly generate ShvNilp(BunG,k).

Remark 3.1.10. Note that Corollary 3.1.9 is as an extension to positive characteristic of the main result
of [FR].

One can similarly show that objects of type (i) in Corollary 3.1.9 generate the tempered subcategory
of ShvNilp(BunM,k).
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Remark 3.1.11. We conjecture that the entire Shv(BunG,k) is generated by objects of the form:

(i) F ⋆ PoincVac
!,k , F ∈ Rep(Ǧ)Ran,

(ii) Eis−! (FM ), FM ∈ Shv(BunM,k)
c.

We can prove this over a ground field of characteristic 0, but so far not over a field of positive
characteristic.

3.1.12. Proof of Theorem 1.1.7. We can now deduce Theorem 1.1.7 for k.

We need to show that compact generators of ShvNilp(BunG,k) are compact as objects of Shv(BunG,k).

By Corollary 3.1.9, it suffices to show to show that the objects

E ⋆ PoincVac
!,Nilp,k ≃ SpK→k(E ⋆ PoincVac

!,Nilp,K,k)

and

Eis−! (FM ), FM ∈ ShvNilp(BunM,k)
c

are compact in Shv(BunG,k).

For objects of the second type, this is clear by induction on the semi-simple rank, since the functor
Eis−! preserves compactness. Thus, it remains to deal with objects of the first type.

According to [AGKRRV1, Proposition 16.4.7], the validity of Theorem 1.1.7 (in a given context) is
equivalent to the fact that the compact generators of ShvNilp(BunG) are eventually coconnective.

Hence, this property holds for ShvNilp(BunG,K) by Sect. 2.2.3. In particular, the objects E ⋆
PoincVac

!,Nilp,K,k are eventually coconnective. Now Property (E) implies that the objects

SpK→k(E ⋆ PoincVac
!,Nilp,K)

are also eventually coconnective.
□[Theorem 1.1.7]

3.2. Proof of Theorem 1.3.9(i). In this subsection we will show that the existence of the functor
SpK→k with Properties (A)-(E) specified in Theorem 3.1.6 allows us to deduce Theorem 1.3.9(i) from
Theorem 1.3.9(ii).

3.2.1. First, note that the validity of Theorem 1.3.9(ii) for K implies that the functor Lrestr
G,K induces

an equivalence

ShvNilp(BunG,K,k)
∼→ QCoh(LSrestr

Ǧ,k ) ⊗
QCoh(LSrestr

Ǧ,K
)
IndCohNilp(LS

restr
Ǧ,K ) ≃ IndCohNilp(LS

restr
Ǧ,k );

denote it by Lrestr
G,K,k.

3.2.2. Set

(3.2) ′Lrestr,L
G,k := SpK→k ◦(L

restr
G,K,k)

−1, IndCohNilp(LS
restr
Ǧ,k )→ ShvNilp(BunG,k).

Note that it follows from Property (C) that

(3.3) ′Lrestr,L
G,k ◦ uspec ≃ Lrestr,L

G,temp,k.

3.2.3. We will prove:

Proposition 3.2.4. The functor ′Lrestr,L
G,k is the left adjoint of Lrestr

G,k .

The proof will be given in Sect. 3.3 below. We proceed with the proof of Theorem 1.3.9(i). Assuming
the proposition, we will denote

Lrestr,L
G,k := ′Lrestr,L

G,k .
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3.2.5. As a formal corollary of Proposition 3.2.4 combined with Property (A), we obtain:

Corollary 3.2.6. The functor Lrestr
G,k is fully faithful.

Thus, to prove Theorem 1.3.9(ii) it remains to show that the essential image of Lrestr
G,k equals

IndCohNilp(
′LSrestr

Ǧ,k ),

where ′LSrestr
Ǧ,k is the disjoint union of some of the connected components of LSrestr

Ǧ,k .

3.2.7. Since the functors involved are QCoh(LSrestr
Ǧ,k )-linear, we can work with one connected compo-

nent of LSrestr
Ǧ,k at a time. I.e., we need to show that for a given connected component Zα of LSrestr

Ǧ,k ,

either the adjoint functors

(3.4) Lrestr
Ǧ,k,α : QCoh(Zα) ⊗

QCoh(LSrestr
Ǧ,k

)
ShvNilp(BunG,k)⇆ IndCohNilp(Zα) : Lrestr,L

G,k,α

are mutually inverse equivalences, or the left-hand side is zero.

We consider separately the cases when a given connected component corresponds to reducible or
irreducible local systems.

3.2.8. We start with the irreducible case. Note that the inclusion

uspec : QCoh(Zα)→ IndCohNilp(Zα)

is an equality.

Hence, the composition

Lrestr
Ǧ,k,α ◦ L

restr,L
G,k,α ,

being a QCoh(Zα)-linear endofunctor of QCoh(Zα), is given by tensoring by a unital algebra object11

Aα ∈ QCoh(Zα).

We need to show that either the unit map

(3.5) OZα → Aα

is an isomorphism, or Aα = 0.

By Barr-Beck-Lurie, the right adjoint in (3.4) identifies the left-hand side with

Aα-mod(QCoh(Zα)).

By Corollary 3.2.6, the forgetful functor

(3.6) Aα-mod(QCoh(Zα))→ QCoh(Zα)

is fully faithful.

Let

iσ : pt→ Zα

correspond to the (unique) closed point of Zα.

Applying to (3.6) the operation Vect ⊗
i∗σ,QCoh(Zα)

(−), we obtain a fully faithful functor

i∗σ(Aα)-mod(Vect)→ Vect .

This easily implies that either e→ i∗σ(Aα) is an isomorphism, or i∗σ(Aα) = 0. The latter dichotomy
implies that one of the above two possibilities for Aα itself must hold.

11The algebra structure comes from the fact that Lrestr
Ǧ,k,α

◦ Lrestr,L
G,k,α is a QCoh(Zα)-linear monad.
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3.2.9. We now consider the reducible case. Let LSrestr
Ǧ,k,σ be a connected component whose closed point

σ is a semi-simple local system. Then there exists a unique conjugacy class of Levi subgroups M (see
[AGKRRV1, Sects. 3.6 and 3.7]) such that σ factors via an irreducible M̌ -local system σM̌ .

By induction on the semi-simple rank, we can assume that the assertion of Theorem 1.3.9(ii) is valid
for M . Let LSrestr

M̌,k,σM̌
be the corresponding connected component of LSrestr

M̌,k .

We consider the following two cases of the behavior of the functor (3.4) with G replaced by M and
Zα := LSrestr

M̌,k,σM̌
:

(a) It is an equivalence;

(b) The left-hand side is zero.

3.2.10. We claim that in case (a), the functor (3.4) for G and Zα := LSrestr
Ǧ,k,σ is an equivalence.

Indeed, it is enough to show that the essential image of Lrestr
Ǧ,k,α generates the target category. Note

that IndCohNilp(LS
restr
Ǧ,k,σ) is generated by the essential images of the functors

Eis−,spec : IndCohNilp(LS
restr
M̌,k,σ)→ IndCohNilp(LS

restr
Ǧ,k,σ)

for the parabolics in the given class of association.

Now the required assertion follows from Theorem 1.4.6 (for k).

3.2.11. We claim that in case (b), the left adjoint in (3.4) for G and Zα := LSrestr
Ǧ,k,σ, is zero. This will

show that the left-hand side is zero (by Corollary 3.2.6).

By construction and Property (B), we can identify the functor in question with

SpK→k : QCoh(LSrestr
Ǧ,k,σ) ⊗

QCoh(LSrestr
Ǧ,k

)
ShvNilp(BunG,K,k)→ QCoh(LSrestr

Ǧ,k,σ) ⊗
QCoh(LSrestr

Ǧ,k
)
ShvNilp(BunG,k).

We will show that the above functor annihilates the generators. By Property (D), we have a
commutative diagram

QCoh(LSrestr
M̌,k,σM̌

) ⊗
QCoh(LSrestr

M̌,k
)
ShvNilp(BunM,K,k)

Eis−
!−−−−−→ QCoh(LSrestr

Ǧ,k,σ) ⊗
QCoh(LSrestr

Ǧ,k
)
ShvNilp(BunG,K,k)

SpK→k

y ySpK→k

QCoh(LSrestr
M̌,k,σM̌

) ⊗
QCoh(LSrestr

M̌,k
)
ShvNilp(BunM,k) −−−−−→

Eis−
!

QCoh(LSrestr
Ǧ,k,σ) ⊗

QCoh(LSrestr
Ǧ,k

)
ShvNilp(BunG,k).

We claim that the top horizontal arrows in these diagrams, taken for all the parabolics in the given
class of association, generate the target. This follows from the combination of:

(i) The fact that Lrestr
G,K is an equivalence;

(ii) Theorem 1.4.6 for K;

(iii) The corresponding fact on the spectral side.

Hence, it suffices to show that the anti-clockwise circuits in these diagrams vanish. However, this
follows from the fact that the lower-left corner vanishes (this is the assumption in case (b)).

□[Theorem 1.3.9(i)]
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3.2.12. Proof of Theorem 1.3.9(iii). We need to show that in the notations of (3.4), the category

(3.7) QCoh(Zα) ⊗
QCoh(LSrestr

GLn
)
ShvNilp(BunGLn)

is non-zero for every connected component Zα of LSrestr
GLn

.

By induction, we may assume that the functor Lrestr
GLn′

is an equivalence for n′ < n. In particular, it
is an equivalence for proper Levi subgroups of G = GLn. Hence, in the notations of Sect. 3.2.9 only
scenario (a) occurs. In particular, the category (3.7) is non-zero whenever Zα corresponds to reducible
local systems.

It remains to treat the case of Zα corresponding to an irreducible local system σ. It is enough to
show that ShvNilp(BunGLn) contains a non-zero Hecke eigensheaf corresponding to σ. However, this
has been established in [FGV, Ga1].

□[Theorem 1.3.9(iii)]

3.3. Proof of Proposition 3.2.4.

3.3.1. Note that the functor ′Lrestr,L
G,k preserves compactness (see Sect. 3.1.7). Hence, it is enough to

show that for

F ∈ IndCohNilp(LS
restr
Ǧ,k )c and M ∈ ShvNilp(BunG,k)

c,

there is a canonical isomorphism

(3.8) HomShv(BunG,k)(
′Lrestr,L

G,k (F),M) ≃ HomIndCohNilp(LSrestr
Ǧ,k

)(F,L
restr
G,k (M)).

3.3.2. Consider the tempered quotients

uR : ShvNilp(BunG,k)⇆ ShvNilp(BunG,k)temp : u

and

uspec,R : IndCohNilp(LS
restr
Ǧ,k )⇆ QCoh(LSrestr

Ǧ,k ) : uspec.

By construction, the functor Lrestr
G,k induces a functor

Lrestr
G,temp,k : ShvNilp(BunG,k)temp → QCoh(LSrestr

Ǧ,k )

such that

Lrestr
G,temp,k ◦ uR ≃ Lrestr

G,coarse,k ≃ uspec,R ◦ Lrestr
G,k .

In particular, the functor Lrestr,L
G,temp,k takes values in ShvNilp(BunG,k)temp (viewed as a subcategory)

and provides a left adjoint to Lrestr
G,temp,k.

3.3.3. By Proposition 4.5.2 below, the functor ′Lrestr,L
G,k induces a functor

′Lrestr,L
G,temp,k : QCoh(LSrestr

Ǧ,k )→ ShvNilp(BunG,k)temp,

so that

uR ◦ ′Lrestr,L
G,k ≃ ′Lrestr,L

G,temp,k ◦ u
spec,R.

From (3.3) we obtain that
′Lrestr,L

G,temp,k ≃ Lrestr,L
G,temp,k.

In particular, we obtain that the functors

(3.9) Lrestr
G,temp,k : ShvNilp(BunG,k)temp ⇆ QCoh(LSrestr

Ǧ,k ) : ′Lrestr,L
G,temp,k

do form an adjoint pair.
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3.3.4. Consider the maps

(3.10) HomShv(BunG,k)(
′Lrestr,L

G,k (F),M)→ HomShvNilp(BunG,k)temp(u
R ◦ ′Lrestr,L

G,k (F),uR(M)) =

= HomShvNilp(BunG,k)temp(
′Lrestr,L

G,temp,k ◦ u
spec,R(F),uR(M))

adjunction (3.9)
≃

≃ HomQCoh(LSrestr
Ǧ,k

)(u
spec,R(F),Lrestr

G,temp,k ◦ uR(M)) =

= HomQCoh(LSrestr
Ǧ,k

)(u
spec,R(F),uspec,R ◦ Lrestr

G,k (M))← HomIndCohNilp(LSrestr
Ǧ,k

)(F,L
restr
G,k (M))

In order to establish (3.8), it suffices to show that the first and the last arrow in (3.10) are isomor-
phisms.

For the last arrow, this follows from the fact that the functor Lrestr
G,k sends compact objects to even-

tually coconnective objects (by construction), and the functor uspec,R is fully faithful on the eventually
coconnective subcategory.

For the first arrow, since Lrestr,L
G,k (F) is compact (see Sect. 3.1.7), the assertion follows from the next

lemma:

Lemma 3.3.5. The restriction of the functor uR to ShvNilp(BunG,k)
c is fully faithful.

Proof. Repeats verbatim the proof of [GLC1, Proposition 5.2.3].
□

□[Proposition 3.2.4]

3.4. An alternative proof of Theorem 1.3.9(i) and Proposition 3.2.4. This proof will use an
additional property of the functor SpK→k, given by Remark 7.4.3.

3.4.1. Let
′Lrestr,L

G,k : IndCohNilp(LS
restr
Ǧ,k )→ ShvNilp(BunG,k)

be defined as in (3.2).

We already know that this functor preserves compactness and by Property (A) of the functor (3.1),

it is a Verdier quotient. I.e., the functor ′Lrestr,L
G,k admits a QCoh(LSrestr

Ǧ,k )-linear fully faithful right

adjoint. Denote it by ′Lrestr
G,k (note, however, that we do know yet that ′Lrestr

G,k is isomorphic to Lrestr
G,k ).

We wish to show that ′Lrestr
G,k is an equivalence onto a direct summand of IndCohNilp(LS

restr
G,k ) corre-

sponding to the union of some of the connected components of LSrestr
Ǧ,k .

3.4.2. Inspecting the argument in Sects. 3.2.7-3.2.11, we see that the only place where we used that
′Lrestr

G,k = Lrestr
G,k was in case (a) in Sect. 3.2.10. We provide an alternative argument as follows:

It suffices to prove that the functor ′Lrestr,L
G,k |IndCohNilp(LSrestr

Ǧ,k,σ
) is conservative. In other words, we

wish to show that in case (a) the functor

(3.11) SpK→k : QCoh(LSrestr
Ǧ,k,σ) ⊗

QCoh(LSrestr
Ǧ,k

)
Shv(BunG,K,k)→ QCoh(LSrestr

Ǧ,k,σ) ⊗
QCoh(LSrestr

Ǧ,k
)
Shv(BunG,k)

is conservative.

According to Remark 7.4.3, we have commutative diagrams

(3.12)

QCoh(LSrestr
M̌,k,σ) ⊗

QCoh(LSrestr
M̌,k

)
Shv(BunM,K,k)

SpK→k−−−−−→ QCoh(LSrestr
M̌,k,σ) ⊗

QCoh(LSrestr
M̌,k

)
Shv(BunM,k)

CT−∗

x xCT−∗

QCoh(LSrestr
Ǧ,k,σ) ⊗

QCoh(LSrestr
Ǧ,k

)
Shv(BunG,K,k)

SpK→k−−−−−→ QCoh(LSrestr
Ǧ,k,σ) ⊗

QCoh(LSrestr
Ǧ,k

)
Shv(BunG,k),

where CT−∗ denotes the constant term functor.
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Now, the validity of GLC over K implies that the direct sums of the functors CT−∗ over the parabolics
in the given class of association (i.e., the left vertical arrow in (3.12)) is conservative.

By induction on the semi-simple rank we can assume that the top horizontal arrow in (3.12) is
conservative.

Hence, the bottom the top horizontal arrow in (3.12) is also conservative, as desired.
□[Theorem 1.3.9(i)]

3.4.3. We now give an alternative argument for Proposition 3.2.4. Namely, we wish to show that
′Lrestr

G,k = Lrestr
G,k . We will show that ′Lrestr

G,k satisfies the two conditions of Corollary 1.3.6.

We already know that ′Lrestr
G,k induces an equivalence

ShvNilp(BunG,k)→ IndCohNilp(
′ LSrestr

k ).

In particular, it sends compact objects to compact (and, in particular, eventually coconnective) ones.
Hence, ′Lrestr

G,k satisfies condition (i) of Corollary 1.3.6.

Condition (ii) follows by passing to right adjoints from (3.3).
□[Proposition 3.2.4]

4. Proof of Theorem 3.1.6

In this section we begin the proof of Theorem 3.1.6. Namely, we will construct the functor Sp and
establish Properties (B)-(E).

Property (A) will be dealt with in the next section.

4.1. Construction of the specialization functor.

4.1.1. Let YR0 be a scheme or algebraic stack over R0. Our goal is to define a functor

(4.1) SpK→k : Shv(YK)→ Shv(Yk).

Denote

Spec(k)
i→ Spec(R)

j← Spec(K).

We will use the same symbols i and j for the corresponding maps

Yk → YR ← YK.

Euphemistically, the functor SpK→k is given by

(4.2) i∗ ◦ j∗.
Note, however, that Spec(R) is non-Noetherian. In what follows we will rewrite the definition of

SpK→k in terms of functors that only use algebro-geometric objects of finite type.

4.1.2. First, covering YR0 smoothly be (affine) schemes, it is sufficient to define SpK→k for YR0 = SR0 ,
where SR0 is an affine scheme of finite type over R0, provided that it commutes with pullbacks along
smooth maps S′R0

→ SR0 .

Second, since Shv(SK) is by definition the ind-completion of Shv(SK)
c, it suffices to define SpK→k as

a functor Shv(SK)
c → Shv(Sk)

c.

Third, by the definition of Shv(−)c, this category is the colimit of Shv(−)cE , over Qℓ ⊂ E ⊂ Qℓ, where
E is a finite extension of Qℓ. Hence, it suffices to define SpK→k as a functor Shv(SK)

c
E → Shv(Sk)

c
E .

Fourth, by the definition of Shv(−)cE , it is obtained as the localization with respect to ℓ of Shv(−)cOE
.

Hence, it suffices to define SpK→k as a functor Shv(SK)
c
OE
→ Shv(Sk)

c
OE

.

Finally, by the definition of Shv(−)cOE
, it is obtained as

lim
n

Shv(−)cOE/ℓn ,

where the limit is taken in the ∞-category of non-cocomplete DG categorries.
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Hence, it suffices to define SpK→k as a functor

(4.3) Shv(SK)
c
OE/ℓn → Shv(Sk)

c
OE/ℓn .

4.1.3. Note that

Shv(SK)
c
OE/ℓn = colim

K′0

Shv(SK′0
)cOE/ℓn ,

where:

• The colimit is taken in the ∞-category of non-cocomplete DG categorries;
• The index category is the poset of finite extensions K′0 ⊃ K0.

We proceed to define the corresponding functors

(4.4) SpK′0→k : Shv(SK′0
)cOE/ℓn → Shv(Sk)

c
OE/ℓn .

4.1.4. Let R′0 denote the integral closure of R0 in K′0. Consider the diagram

Yk −−−−−→ YR′0
←−−−−− YK′0y y y

Spec(k) −−−−−→ Spec(R′0) ←−−−−− Spec(K′0).

We define (4.4) to be the nearby cycles functor Ψ.

4.1.5. Note that, by construction, the composition

Shv(YK0)
pullback−→ Shv(YK)

SpK→k−→ Shv(Yk)

is the usual nearby cycles functor

Ψ : Shv(YK0)→ Shv(Yk).

4.1.6. We record the following properties of the functor (4.1):

(1) It is t-exact;

(2) It sends constructible12 objects in Shv(YK) to constructible objects in Shv(YK);

(3) For YR0 = Y1
R0
× Y2

R0
and Fi ∈ Shv(Yi

K), we have

(4.5) SpK→k(F1 ⊠ F2) ≃ SpK→k(F1)⊠ SpK→k(F2).

(4) For a map f : Y1
R0
→ Y2

R0
we have the natural transformations

(4.6) (fk)! ◦ SpK→k → SpK→k ◦(fK)!, SpK→k ◦(fK)∗ → (fk)∗ ◦ SpK→k,

and

(4.7) (fk)
∗ ◦ SpK→k → SpK→k ◦(fK)

∗, SpK→k ◦(fK)
! → (fk)

! ◦ SpK→k,

where fk (resp., fK) denotes the fiber of f over Spec(k) (resp., Spec(K)).

(5) The maps (4.6) are mutually inverse isomorphisms when f is proper and the maps (4.7) are
mutually inverse isomorphisms (up to a shift by the relative dimension) when f is smooth.

12Constructible:=pullback to an affine scheme by means of a smooth morphism is constructible (i.e., compact).
Note, however, that for stacks “constructible” does not imply “compact”: the obstruction is (i) non-quasi-compactness
of the stack and (ii) non-trivial stabilizers.
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(6) It commutes with Verdier duality on constructible objects

(4.8) DYk(SpK→k(F)) ≃ SpK→k(DYK(F));

moreover, for an object F ∈ Shv(YK)
constr, the following diagram commutes

(4.9)

SpK→k(F)⊠ DYk(SpK→k(F))
∼−−−−−→

id⊠(4.8)
SpK→k(F)⊠ SpK→k(DYK(F))x x

(∆Yk)!(eYk
) −−−−−→ SpK→k ◦(∆YK)!(eYK

),

where:

• The symbol SpK→k in the bottom-right corner refers to the functor (4.1) for YR0 ×
Spec(R0)

YR0 ;

• The bottom horizontal arrow comes from the identification eSpec(k) ≃ SpK→k(eSpec(K)) and
the natural transformation

(∆Yk)! ◦ π
∗
Yk
◦ SpK→k → SpK→k ◦(∆YK)! ◦ π

∗
YK

where πY− : Y− → Spec(−) is the relevant structural map.

Remark 4.1.7. Suppose α : F → G is a morphism of constructible sheaves. From (4.9) we obtain a
tautological commutative diagram

(4.10)

SpK→k(G)⊠ DYk(SpK→k(F))
∼−−−−−→

id⊠(4.8)
SpK→k(G)⊠ SpK→k(DYK(F))x x

(∆Yk)!(eYk
) −−−−−→ SpK→k ◦(∆YK)!(eYK

).

In this formulation, there is some additional homotopy coherence to note. Each term of (4.10) can
now be considered as a functor from TwArr(Shv(YK))

constr, the twisted arrow category of constructible
sheaves, to Shv(Yk×Spec(k)Yk). Then the more functorial assertion of (6) is that there is an commutative
square of functors (4.10).

4.1.8. The following observation will be used in the sequel:

Lemma 4.1.9. Let f : YR0 → ZR0 be a map of algebraic stacks over Spec(R0). Let FY,R0 ∈ Shv(YR0)
be ULA over ZR0 . Then for any FZ ∈ Shv(ZK), the naturally defined map

FY,k

∗
⊗ (f∗k ◦ SpK→k(GZ))→ SpK→k(FY,K

∗
⊗ f∗K(FZ))

is a isomorphism, where FY,k (resp., FY,K) denotes the *-restriction of FY,R0 to Yk (resp., YK)

Remark 4.1.10. Note that when ZR0 = Spec(R0), the ULA condition simply means that

Φ(FY,R0) = 0,

where Φ is the vanishing cycles functor.

In other words, this is equivalent to the map

FY,k → SpK→k(FY,K)

being an isomorphism.

4.1.11. In what follows we will study the resulting functor

(4.11) SpK→k : Shv(BunG,K)→ Shv(BunG,k).

4.2. Specialization and Hecke functors.
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4.2.1. Consider the version of the Hecke stack over Spec(R0):

BunG,R0

←
h←−−−−− HeckeX,R0

→
h−−−−−→ BunG,R0ys

XR0 .

For an irreducible representation

V λ ∈ Rep(Ǧ), λ ∈ Λ+,

let

SatnvX,R0
(V λ) ∈ Shv(HeckeX,R0)

be the object13

IC
Hecke

λ
X,R0

[−2].

We claim:

Theorem 4.2.2. The object SatnvX,R0
(V λ) restricts to SatnvX,K(V

λ) and SatnvX,k(V
λ), respectively, and is

ULA over BunG,R0 ×
Spec(R0)

XR0 with respect to either of the projections.

We will prove this theorem in Sect. 6.1.

4.2.3. For a finite set I, consider the corresponding I-legged Hecke stack:

BunG

←
h←−−−−− HeckeXI

→
h−−−−−→ BunGys

XI.

As in the usual geometric Satake theory, Theorem 4.2.2 allows us to construct a family of functors

(4.12) SatnvXI,R0
: Rep(Ǧ)⊗I → Shv(HeckeXI,R0

).

Moreover, the essential image of the functor (4.12) lies in the full subcategory of Shv(HeckeXI,R0
)

that consists of objects that are ULA over BunG,R0 (in fact, over BunG,R0 ×
Spec(R0)

XI
R0
).

4.2.4. Consider the Hecke functor

HV : Shv(BunG)→ Shv(BunG×XI), (
←
h × s)!

(
→
h∗(−)

∗
⊗ SatnvXI(V )

)
, V ∈ Rep(Ǧ)⊗I.

The functors (4.12) give rise to natural transformations

(4.13) HV,k ◦ SpK→k → SpK→k ◦HV,K

as functors

Shv(BunG,K)→ Shv(BunG,k×XI
k ).

We claim:

Proposition 4.2.5. The natural transformations (4.13) are isomorphisms.

13The cohomological shift [−2] in the formula below is designed in order to offset dim(X) + dim(R0).
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Proof. The map
←
h × s : HeckeXI → BunG×XI

is proper, hence

(
←
h × s)! ◦ SpK→k → SpK→k ◦(

←
h × s)!

is an isomorphism.

Now, the natural transformation

(
→
h∗(−)

∗
⊗ SatnvXI(V )) ◦ SpK→k → SpK→k ◦(

→
h∗(−)

∗
⊗ SatnvXI(V ))

is also an isomorphism by Lemma 4.1.9 and the ULA property of the objects SatnvXI,R0
(V ).

□

4.2.6. The functors SatnvXI,R0
, I ∈ fSet make the following system of diagrams of functors commute:

(4.14)

Rep(Ǧ)⊗I1

Satnv
XI1 ,R0−−−−−−−→ Shv(HeckeXI1 ,R0

)

Rep(Ǧ)ϕ

y y∆∗ϕ

Rep(Ǧ)⊗I2

Satnv
XI2 ,R0−−−−−−−→ Shv(HeckeXI2 ,R0

),

for ϕ : I1 → I2, where:

• The left vertical arrow is induced by the symmetric monoidal structure on Rep(Ǧ);

• The map ∆ϕ is (the base change of) the diagonal map XI2 → XI1 .

This leads to a system of commutative diagrams of functors

(idBunG ×∆ϕ)
∗ ◦HV,k ◦ SpK→k −−−−−→ (idBunG ×∆ϕ)

∗ ◦ SpK→k ◦HV,K

∼
y y∼

HResϕ(V ),k ◦ SpK→k −−−−−→ SpK→k ◦HResϕ(V ),K,

which also depends functorially on V ∈ Rep(Ǧ)⊗I.

4.3. Compatibility with Beilinson’s projector.

4.3.1. Recall Beilinson’s projector, denoted P, which is an idempotent acting on Shv(BunG) with
essential image ShvNilp(BunG), see [AGKRRV1, Sect. 13.4].

We will denote by Pk (resp., PK) the corresponding endofunctor of Shv(BunG,K) (resp., Shv(BunG,k)).

Let now PK,k be a version of PK, where in we take Γ!(LS
restr
G,k ,−) instead of Γ!(LS

restr
G,K ,−). This is

an idempotent endomorphism of Shv(BunG,K), equal to the composition of PK and the projection onto
the direct summand

ShvNilp(BunG,K,k) ⊂ ShvNilp(BunG,K).

4.3.2. We claim:

Proposition 4.3.3. There exists a canonical isomorphism

SpK→k ◦PK,k ≃ Pk ◦ SpK→k .

Proof. By construction (see [AGKRRV1, Sect. 13.1.11]), the functor PK,k is the colimit of functors FI ,
I ∈ fSet, each of which is the composition of functors of the following form:

• (a) HVI : Shv(BunG)→ Shv(BunG×XI) for VI ∈ Rep(Ǧ)⊗I ;

• (b) (−)⊗ Ev(V ′I ) : Shv(BunG×XI)→ Shv(BunG×XI)⊗QCoh(LSrestr
Ǧ ), where:

– V ′I ∈ Rep(Ǧ)⊗I ;
– Ev(V ′I ) ∈ QLisse(XI)⊗QCoh(LSrestr

Ǧ ) is the tautological object corresponding to V ′I .

• (c) Id⊗Γ!(LS
restr
Ǧ,k ,−).
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The functors in (a) commute with SpK→k by Proposition 4.2.5. The functors in (b) commute with
SpK→k by Lemma 4.1.9. The functors in (c) commute with SpK→k tautologically.

□

Remark 4.3.4. For future use we remark that both Proposition 4.2.5 and 4.3.3 remain valid if instead
of BunG,R0 we consider

BunG,R0 ×
Spec(R0)

YR0 ,

for some stack YR0 over Spec(R0). The proofs remain the same.

4.3.5. From Proposition 4.3.3 we obtain:

Corollary 4.3.6. The functor (4.11) sends

ShvNilp(BunG,K,k) ⊂ ShvNilp(BunG,K)

to
ShvNilp(BunG,k) ⊂ Shv(BunG,k).

Remark 4.3.7. Note that Proposition 4.3.3 implies that the functor (4.11) sends all of ShvNilp(BunG,K)
to ShvNilp(BunG,k), while killing the direct summands of ShvNilp(BunG,K) that are supported off

LSrestr
Ǧ,k ⊂ LSrestr

Ǧ,K .

This follows from the fact that the functor PK,k applied to ShvNilp(BunG,K) acts as a projector on
ShvNilp(BunG,K,k).

Remark 4.3.8. One can also prove that the functor (4.11) sends ShvNilp(BunG,K) → ShvNilp(BunG,k)
as follows:

It follows from [AGKRRV1, Theorem 14.4.3] that the subcategory

ShvNilp(BunG) ⊂ Shv(BunG)

can be characterized as follows: it consists of those objects F ∈ Shv(BunG) for which for every V ∈
Rep(Ǧ) the object

HV (F) ∈ Shv(BunG×X)

belongs to the full subcategory14

Shv(BunG)⊗ Shv(X) ⊂ Shv(BunG×X).

Now, this property is preserved by the functor SpK→k by (4.5).

4.3.9. Thus, thanks to Corollary 4.3.6 we obtain the functor (3.1).

Note that the functor (3.1) satisfies Property (E) from Sect. 3.1.4 holds. In fact, the functor SpK→k

is t-exact by Sect. 4.1.6.

4.3.10. We are now ready to establish Property (B) (from Sect. 3.1.4). Indeed, it follows from Propo-
sition 4.2.5, since the spectral action is determined by the Hecke functors (see [AGKRRV1, Corollary
12.8.4(b)]).

4.4. Properties (C) and (D) of the specialization functor.

4.4.1. Note that the construction in [GLC1, Sect. 3.3] (see Sect. 7.1.1 below for a review) makes sense
over R0, and produces an object

PoincVac
!,R0
∈ Shv(BunG,R0).

In Sect. 7.1 we will prove:

Theorem 4.4.2. The object PoincVac
!,R0

is ULA over Spec(R0).

14In [AGKRRV1, Theorem 14.4.3], this is formulated as belonging to Shv(BunG) ⊗ qLisse(X) ⊂ Shv(BunG ×X);
however, the apparently weaker condition of belonging to Shv(BunG)⊗Shv(X) is equivalent to this stronger condition:
objects in the essential image of HV are ULA over X, and any object in Shv(BunG)⊗ Shv(X) that is ULA over X lies
in Shv(BunG) ⊗ qLisse(X).
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4.4.3. By combining Theorem 4.4.2 with Proposition 4.3.3 and Lemma 4.1.9, we obtain Property (C).

4.4.4. Consider the stacks

BunP−,R0

j
↪→ B̃unP−,R0

and the projection

q̃− : B̃unP−,R0
→ BunM,R0 .

In Sect. 6.3 we will prove:

Theorem 4.4.5. The object

j!(eBun
P−,R0

) ∈ Shv(B̃unP−,R0
)

is ULA with respect to the projection q̃−.

4.4.6. By combining Theorem 4.4.5 and Lemma 4.1.9 we deduce Property (D) of (3.1).

4.5. Specialization and temperedness. In this subsection and formulate and prove a property of
the functor SpK→k that describes its interaction with the temperization functor.

4.5.1. We claim:

Proposition 4.5.2. The functor

SpK→k : Shv(BunG,K)→ Shv(BunG,k)

induces a functor

Shv(BunG,K)temp → Shv(BunG,k)temp

so that the diagram

Shv(BunG,K)
SpK→k−−−−−→ Shv(BunG,k)

uR

y yuR

Shv(BunG,K)temp −−−−−→ Shv(BunG,k)temp

commutes.

We will give two proofs of this proposition.

4.5.3. First proof. Let x ∈ X be a chosen point (which we use to define ShvNilp(BunG)temp) and let
Sph(G)x is the spherical Hecke category at x (see [GLC2, Sect. 1.5]).

Recall (see [AG1, Sect. 18.4]) that the colocalization

uR : Shv(BunG)⇆ ShvNilp(BunG)temp : u

can be characterized in terms of the action of the monoidal category

IndCohNilp(pt ×̌
g
pt /Ad(Ǧ))

on Shv(BunG), obtained as a composition of the derived Satake equivalence

Sphspec(Ǧ)x := IndCohNilp(pt ×̌
g
pt /Ad(Ǧ))

SatG≃ Sph(G)x

and the natural action of Sph(G)x on Shv(BunG) by Hecke functors.

Thus, in order to prove Proposition 4.5.2, it suffices to show that the functor SpK→k intertwines the
actions of Sphspec(Ǧ)x on Shv(BunG,K) and on Shv(BunG,k), where we let x be a section Spec(R0) →
XR0 .

By construction, the functor

SpK→k : Sph(G)x,K → Sph(G)x,k

intertwines the action of Sph(G)x,K on Shv(BunG,K) with the action of Sph(G)x,k on Shv(BunG,k).
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Hence, it remains to show that the endomorphism ϕ of Sphspec(Ǧ)x that makes the following diagram
commute

Sphspec(Ǧ)x
ϕ−−−−−→ Sphspec(Ǧ)x

SatG

y∼ ∼
ySatG

Sph(G)x,K
SpK→k−−−−−→ Sph(G)x,k

is actually an automorphism.

We note that ϕ has the following properties:

• It is monoidal;
• It makes the diagram

Rep(Ǧ)
id−−−−−→ Rep(Ǧ)y y

Sphspec(Ǧ)x
ϕ−−−−−→ Sphspec(Ǧ)x

commute (this follows from Theorem 4.2.2);
• It induces the identity map on endomorphisms of the unit object

Sym(ǧ[−2])Ǧ ≃ EndSphspec(Ǧ)x
(1Sphspec(Ǧ)x

)
ϕ→ EndSphspec(Ǧ)x

(1Sphspec(Ǧ)x
) ≃ Sym(ǧ[−2])Ǧ.

The third points follow from the fact that the composite

Sym(t∗[−2])W ≃ C·(pt /GK) ≃ EndSph(G)x,K
(1Sph(G)x,K

)
SpK→k−→

→ EndSph(G)x,K
(1Sph(G)x,k

) ≃ C·(pt /Gk) ≃ Sym(t∗[−2])W

is the identity map, while the identification Sym(ǧ[−2])Ǧ ≃ EndSphspec(Ǧ)x
(1Sphspec(Ǧ)x

) equals

Sym(ǧ[−2])Ǧ ≃ Sym(̌t[−2])W ≃

≃ Sym(t∗[−2])W ≃ EndSph(G)x(1Sph(G)x)
SatG≃ EndSphspec(Ǧ)x

(1Sphspec(Ǧ)x
).

We now claim:

Lemma 4.5.4. Any endomorphism of Sphspec(Ǧ)x that has the above three properties is an automor-
phism.

The proof of the lemma is given in Sect. 4.5.6 below.
□[First proof of Proposition 4.5.2]

4.5.5. Second proof. We have to show that the functor SpK→k sends

ker(uR) : Shv(BunG,K)
uR

↠ Shv(BunG,K)temp

to

ker(uR) : Shv(BunG,k)
uR

↠ Shv(BunG,k)temp.

Recall the characterization of the kernel of

Shv(BunG)
uR

→ Shv(BunG)temp

in [FR, Sect. 4.3].

The required assertion follows from the fact that the functors involved in this characterization
commute with SpK→k.

□[Second proof of Proposition 4.5.2]
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4.5.6. Proof of Lemma 4.5.4. We rewrite

Sphspec(Ǧ)x ≃ Sym(ǧ[−2])-modǦ.

Using the first two properties, we can de-equivariantize both sides, i.e., apply Vect ⊗
Rep(Ǧ)

−, and

obtain a functor

Sym(ǧ[−2])-mod
ϕ̃→ Sym(ǧ[−2])-mod

with the following properties:

• It is Ǧ-equivariant;
• It sends Sym(ǧ[−2]) ∈ Sym(ǧ[−2])-mod to itself;
• It makes the diagram

Sym(ǧ[−2])Ǧ id−−−−−→ Sym(ǧ[−2])Ǧy y
Sym(ǧ[−2]) Sym(ǧ[−2])

∼
y ∼

y
EndSym(ǧ[−2])-mod(Sym(ǧ[−2])) ϕ̃−−−−−→ EndSym(ǧ[−2])-mod(Sym(ǧ[−2]))

commute.

It suffices to show that the bottom horizontal arrow in this diagram is an isomorphism. This arrow
is a map of algebras, hence is determined by a map of vector spaces.

ǧ[−2]→ Sym(ǧ[−2]).
The grading forces the latter map to come from a map of vector spaces ǧ→ ǧ. By Ǧ-equivariance,

the latter map acts as a scalar on each simple factor.

However, the commutation of the above diagram forces this scalar to be 1.
□[Lemma 4.5.4]

5. Proof of Property (A)

The goal of this section is to establish Property (A) of the functor (3.1).

5.1. The key input.

5.1.1. Consider the object

(5.1) (∆BunG,R0
)!(eBunG,R0

) ∈ Shv(BunG,R0 ×
Spec(R0)

BunG,R0).

5.1.2. The key input in the proof of Property (A) is provided by the following result:

Theorem 5.1.3. The object (5.1) is ULA over Spec(R0).

The theorem will be proved in Sect. 6.4. We now proceed with the proof of Property (A).

5.1.4. Combining Theorem 5.1.3 with Lemma 4.1.9, we obtain:

Corollary 5.1.5. The natural map

(∆BunG,k)!(eBunG,k
) ≃ (∆BunG,k)! ◦ SpK→k(eBunG,K

)→ SpK→k ◦(∆BunG,K)!(eBunG,K
)

is an isomorphism.

Using the commutation of specialization with Verdier duality, from Corollary 5.1.5 we obtain:

Corollary 5.1.6. The canonical map

SpK→k ◦(∆BunG,K)∗(ωBunG,K)→ (∆BunG,k)∗ ◦ SpK→k(ωBunG,K) ≃ (∆BunG,k)∗(ωBunG,k)

is an isomorphism.
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5.2. Harder-Narasimhan strata.

5.2.1. Recall the notion of contractive locally closed substack, see [DG1, Sect. 5.2.1].

For θ ∈ Λ+
Q , let

Bun
(≤θ)
G ⊂ BunG

be the open union of Harder-Narasimhan strata, as defined in [DG1, Sect. 7.3.4].

The main technical result of the paper [DG1], proved in Sect. 9.3 of loc. cit., says that for all θ
large enough and θ′ ≥ θ, the (locally) closed substack

Bun
(≤θ′)
G −Bun

(≤θ)
G ⊂ Bun

(≤θ′)
G

is contractive.

The proof of this result applies equally well in the relative situation over Spec(R0).

5.2.2. Let θ ≤ θ′ be as above and consider the corresponding open embedding

ȷθ,θ′ : Bun
(≤θ)
G ↪→ Bun

(≤θ′)
G .

We are going to prove:

Proposition 5.2.3. The natural transformations

(ȷθ,θ′)! ◦ SpK→k → SpK→k ◦(ȷθ,θ′)!
and

SpK→k ◦(ȷθ,θ′)∗ → (ȷθ,θ′)∗ ◦ SpK→k

are isomorphisms.

Proof. We will prove the first isomorphism, as the second one is similar.

It is enough to prove the assertion after applying pullback with respect to a smooth surjective map.
Hence, by the definition of contractiveness, it is enough to prove the more general Proposition 5.2.5
below.

□

5.2.4. Let YR0 and ZR0 be as in [DG1, Sect. 5.1.1]. Denote

UR0 := YR0 − ZR0

ȷ
↪→ YR0 .

Proposition 5.2.5. The natural transformation

ȷ! ◦ SpK→k → SpK→k ◦ȷ!
is an isomorphism.

Proof. Let ı denote the closed embedding ZR0 → YR0 . It is enough to show that the natural transfor-
mation

(5.2) ı∗ ◦ SpK→k → SpK→k ◦ı
∗,

as functors Shv(YK)→ Shv(Zk), is an isomorphism.

As in [DG1, Sects. 5.1.3-5.1.5], we can assume that15 Z = pt /Gm×Z and Y = An/Gm×Z for some
base Z, where Gm acts on An via the mth power of the standard character, where m > 0. Further,
applying blow-up (see [DG1, Sect. 5.1.6]), we can assume that n = 1.

It is enough to prove that the map (5.2) is an isomorphism on the generators. We take the generators
to be of the form

(fm)∗(FA1)⊠ FZ ,

where

• fm is the “raising to the power m” map A1 → A1;

15In the formulas below, pt := Spec(R0), and similarly for A1 and Gm.



38 DENNIS GAITSGORY AND SAM RASKIN

• FZ ∈ Shv(Z),
• FA1 ∈ Shv(A1)Gm is either δ0,A1 or eA1 .

In the above cases, the fact that (5.2) is an isomorphism is evident.
□

5.3. Specialization for the “co”-category.

5.3.1. Recall the category Shv(BunG)co, see [AGKRRV2, Sects. 2.5 and C.2]. By definition,

Shv(BunG)co ≃ colim
θ∈Λ+

Q

Shv(Bun
(≤θ)
G ),

where the colimit is taken with respect to the functors (ȷθ,θ′)∗.

From Proposition 5.2.3 we obtain that there exists a well-defined functor

(5.3) Spco
K→k : Shv(BunG,K)co → Shv(BunG,k)co

that makes the following diagrams commute

(5.4)

Shv(BunG,K)co
Spco

K→k−−−−−→ Shv(BunG,k)co

(ȷθ)co,*

x x(ȷθ)co,*

Shv(Bun
(≤θ)
G,K )

SpK→k−−−−−→ Shv(Bun
(≤θ)
G,k ),

where:

• ȷθ denotes the open embedding Bun
(≤θ)
G ↪→ BunG;

• (ȷθ)co,* denotes the corresponding tautological functor Shv(Bun
(≤θ)
G ) → Shv(BunG)co (not to

be confused with (ȷθ)∗ : Shv(Bun
(≤θ)
G )→ Shv(BunG).

5.3.2. Moreover, the following diagram commutes tautologically

(5.5)

Shv(BunG,K)co
Spco

K→k−−−−−→ Shv(BunG,k)coyPs-Idnv

yPs-Idnv

Shv(BunG,K)
SpK→k−−−−−→ Shv(BunG,k),

where

Ps-Idnv : Shv(BunG)co → Shv(BunG)

is as in [AGKRRV2, Sect. C.2.3].

5.3.3. Recall that for F ∈ Shv(BunG)
c, its Verdier dual is well-defined as an object

DBunG(F) ∈ Shv(BunG)co.

The commutation of specialization with Verdier duality implies that for F ∈ Shv(BunG,K)
c we have

a canonical isomorphism

(5.6) Spco
K→k(DBunG,K(F)) ≃ DBunG,k(SpK→k(F))

as objects in Shv(BunG,k)co.
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5.3.4. We now consider the “mixed” category

Shv(BunG×BunG)co2 ,

defined in [AGKRRV2, Sect. C.4.2].

By definition,

Shv(BunG×BunG)co2 = colim
θ∈Λ+

Q

Shv(BunG×Bun
(≤θ)
G,K ),

where the colimit is taken with respect to the functors (id×ȷθ,θ′)∗.

According to [AGKRRV2, Sect. C.4.3], the functor

(5.7) Shv(BunG×BunG)co2 → lim
U

Shv(U× BunG)co

is an equivalence, where:

• U runs over the poset of quasi-compact open substacks of BunG;
• For U ⊂ U′, the functor Shv(U′ × BunG)co → Shv(U× BunG)co is given by restriction.

The discussion in Sect. 5.3.1 applies equally to the mixed situation.

In addition, we have a tautologically defined functor

Ps-Idnv : Shv(BunG×BunG)co2 → Shv(BunG×BunG)

and the corresponding counterpart of diagram (5.5) commutes.

5.3.5. We will consider the corresponding functor

Spco2
K→k : Shv(BunG,K×BunG,K)co2 → Shv(BunG,k×BunG,k)co2 .

5.3.6. Recall now the object

(∆BunG)fine∗ (ωBunG) ∈ Shv(BunG×BunG)co2 ,

defined in [AGKRRV2, Sect. C.4.6].

In terms of the equivalence (5.7), the restriction of (∆BunG)fine∗ (ωBunG) to a given U× BunG is

(id×ȷ)co,∗ ◦ (∆U)∗(ωU), ȷ : U ↪→ BunG .

We have

Ps-Idnv((∆BunG)fine∗ (ωBunG)) ≃ (∆BunG)∗(ωBunG),

as objects of Shv(BunG×BunG).

5.3.7. We are going to prove:

Proposition 5.3.8. There exist a unique isomorphism

(5.8) Spco2
K→k

(
(∆BunG,K)

fine
∗ (ωBunG,K)

)
≃ (∆BunG,k)

fine
∗ (ωBunG,k)

as objects of Shv(BunG,k×BunG,k)co2 that makes the diagram

Ps-Idnv ◦ Spco2
K→k

(
(∆BunG,K)

fine
∗ (ωBunG,K)

) ∼−−−−−→
(5.8)

Ps-Idnv ◦(∆BunG,k)
fine
∗ (ωBunG,k)

∼
y y∼

SpK→k ◦(∆BunG,K)∗(ωBunG,K)
∼−−−−−−−−−→

Corollary 5.1.6
(∆BunG,k)∗(ωBunG,k)

commute.
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Proof. Using the equivalence (5.7), we have to show that there exists a unique family of isomorphisms

(5.9) Spco2
K→k

(
(∆BunG,K)

fine
∗ (ωBunG,K)

)
|Uk×BunG,k ≃ (∆BunG,k)

fine
∗ (ωBunG,k)|Uk×BunG,k

as objects of Shv(Uk × BunG,k)co, compatible via Ps-Idnv with the isomorphism

SpK→k ◦(∆BunG,K)∗(ωBunG,K)|Uk×BunG,k ≃ (∆BunG,k)∗(ωBunG,k)|Uk×BunG,k ,

induced by the isomorphism of Corollary 5.1.6, where U runs over the poset of quasi-compact open
substacks of BunG.

We can replace the poset of all U by a cofinal one that consists of the substacks Bun
(≤θ)
G for θ

sufficiently large.

The left-hand side in (5.9) is by definition

(5.10) Spco2
K→k ◦(id×ȷθ)co,∗ ◦ (∆Bun

(≤θ)
G,K

)∗(ωBun
(≤θ)
G,K

).

Using (5.4), we write it as

(5.11) (id×ȷθ)co,∗
(
SpK→k ◦(∆Bun

(≤θ)
G,K

)∗(ωBun
(≤θ)
G,K

)

)
.

The right-hand in (5.9) is

(5.12) (id×ȷθ)co,∗
(
(∆

Bun
(≤θ)
G,k

)∗(ωBun
(≤θ)
G,k

)

)
.

By Corollary 5.1.6, the expressions in (5.11) and (5.12) become isomorphic after applying the functor

Ps-Idnv : Shv(Bun
(≤θ)
G,k ×BunG,k)co → Shv(Bun

(≤θ)
G,k ×BunG,k).

Now, the required assertion follows from the fact that the functor Ps-Idnv is fully faithful on the
essential image of

(id×ȷθ)co,∗ : Shv(Bun(≤θ)
G,k ×Bun

(≤θ)
G,k )→ Shv(Bun

(≤θ)
G,k ×BunG,k)co.

□

5.4. Method of proof. In this subsection we launch the proof of Property (A) proper.

5.4.1. The proof is based on the following principle:

Let F : C1 → C2 be a functor between compactly generated categories. Assume that F preserves
compactness, so it admits a continuous right adjoint, denoted FR. Denote

F op := (FR)∨, C∨1 → C∨2 .

Explicitly, identifying

C∨i := Ind((Cc
i )

op),

the functor F op is obtained by ind-extending the same-named functor on compact objects.

5.4.2. Consider the tautological map

(5.13) (F ⊗ F op)(uC1)→ uC2 ,

where uCi ∈ Ci ⊗C∨i is the unit of the self-duality.

The map (5.13) is characterized as follows. For c1 ∈ Cc
1 with formal dual c∨1 ∈ C∨1 , the diagram

(5.14)

(F ⊗ F op)(uC1)
(5.13)−−−−−→ uC2x x

(F ⊗ F op)(c1 ⊗ c∨1 )
∼−−−−−→ F (c1)⊗ F (c1)

∨,

commutes, where the vertical arrows are the canonical maps

(5.15) canc : c⊗ c∨ → uC, c ∈ Cc
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for a compactly generated category C.

Remark 5.4.3. Properly speaking, the object uC ∈ C ⊗ C∨ can be characterized as the colimit over
the the category of twisted arrows in Cc that sends

(ϕ : c′′ → c′) ∈ TwArr(Cc) 7→ (c′ ⊗ (c′′)∨) ∈ C⊗C∨.

Indeed, for ϕ : c′′ → c′ as above, the corresponding map c′ ⊗ (c′′)∨ → uC is either of the circuits in
the following commutative diagram

c′ ⊗ (c′′)∨
id⊗ϕ∨−−−−−→ c′ ⊗ (c′)∨

ϕ⊗id

y ycanc′

c′′ ⊗ (c′′)∨
canc′′−−−−−→ uC.

In what follows, we have chosen to simplify the exposition by not explicitly mentioning the twisted
arrows functoriality and working only with a single object at a time. To make the discussion complete,
one replaces the eventual reference to (4.9) with a reference to Remark 4.1.7.

5.4.4. We have:

Lemma 5.4.5. The functor F is a Verdier quotient if and only if the map (5.13) is an isomorphism.

Proof. We need to show that the counit of the adjunction

F ◦ FR → Id

is an isomorphism. I.e., we have to show that the map

(5.16) ((F ◦ FR)⊗ Id)(uC2)→ uC2

is an isomorphism.

Note that FR identifies with the functor dual to F op. Hence, we can rewrite

((F ◦ FR)⊗ Id)(uC2) = (F ⊗ Id) ◦ (FR ⊗ Id) ◦ (uC2) ≃ (F ⊗ Id) ◦ ((F op)∨ ⊗ Id) ◦ (uC2) ≃
≃ (F ⊗ Id) ◦ (Id⊗F op)(uC1) = (F ⊗ F op)(uC1).

Under this identification, the map (5.16) becomes the map (5.13).
□

5.4.6. We will show that the situation described above takes place for

C1 := ShvNilp(BunG,K), C1 := ShvNilp(BunG,k), F = SpK→k .

5.4.7. First, recall that the functor (3.1) preserves compactness, see Sect. 3.1.7 (this relies on Properties
(B), (C) and (D) , which are proved independently of Property (A)).

Next, recall that (when working over a field), according to [AGKRRV2, Sects. 2.5.8, Corollary 2.6.5
and Proposition 2.7.6], the dual of the category ShvNilp(BunG) identifies with

ShvNilp(BunG)co ⊂ Shv(BunG)co

in such a way that the unit of the duality is the object

(5.17) P((∆BunG)fine∗ (ωBunG)),

where:

• P denotes here Beilinson’s projector, applied along the first factor;

• The object in (5.17), which a priori lies in Shv(BunG×BunG)co2 belongs in fact to

ShvNilp(BunG)⊗ ShvNilp(BunG)co ⊂ Shv(BunG×BunG)co2 .
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5.4.8. Furthermore (still working over a field), the corresponding equivalence

(ShvNilp(BunG)
c)op ≃ (ShvNilp(BunG)co)

c

is induced by the Verdier duality equivalence

(Shv(BunG)
c)op ≃ (Shv(BunG)co)

c,

where we are using the fact that the embedidng

ShvNilp(BunG) ↪→ Shv(BunG)
c

preserves compactness, by Theorem 1.1.7.

5.4.9. A variant of the above discussion applies to ShvNilp(BunG,K,k), where we only need to replace
P by PK,k.

5.4.10. We claim that the functor Spco
K→k of (5.3) sends

ShvNilp(BunG,K,k)co → ShvNilp(BunG,k)co

and identifies with (SpK→k)
op (in the notations of Sect. 5.4.1).

Indeed, this follows by combining (5.6) and Sect. 5.4.8.

5.4.11. Thus, by Lemma 5.4.5 it remains to show that the map (5.13), which in our case is the map

(5.18) (SpK→k⊗ Spco
K→k)

(
PK,k((∆BunG,K)

fine
∗ (ωBunG,K))

)
→ Pk((∆BunG,k)

fine
∗ (ωBunG,k)),

is an isomorphism in ShvNilp(BunG,k)⊗ ShvNilp(BunG,k)co.

5.5. Verification.

5.5.1. Applying the (fully faithful) functor

ShvNilp(BunG,k)⊗ ShvNilp(BunG,k)co →
→ Shv(BunG,k)⊗ Shv(BunG,k)co → Shv(BunG,k×BunG,k)co2 ,

it suffices to show that (5.18) is an isomorphism of objects in Shv(BunG,k×BunG,k)co2 .

5.5.2. By Proposition 4.3.3, we identify the left-hand side in (5.18) with

Pk ◦ Spco2
K→k

(
(∆BunG,K)

fine
∗ (ωBunG,K)

)
,

and using Proposition 5.3.8, we identify it further with

Pk

(
(∆BunG,k)

fine
∗ (ωBunG,k)

)
,

which is the right-hand side in (5.18).

It remains to show that the map in (5.18) corresponds under the above identifications to the identity
map.
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5.5.3. By (5.14), we have to show that for F ∈ ShvNilp(BunG,K,k)
c, the isomorphism

(5.19) Spco2
K→k

(
PK,k((∆BunG,K)

fine
∗ (ωBunG,K))

)
Proposition 4.3.3

≃

≃ Pk ◦ Spco2
K→k

(
(∆BunG,K)

fine
∗ (ωBunG,K)

)
Proposition 5.3.8

≃ Pk

(
(∆BunG,k)

fine
∗ (ωBunG,k)

)
makes the following diagram commute

(5.20)

Spco2
K→k

(
PK,k((∆BunG,K)

fine
∗ (ωBunG,K))

) (5.19)−−−−−→ Pk

(
(∆BunG,k)

fine
∗ (ωBunG,k)

)x x
SpK→k(F)⊠ Spco

K→k(DBunG,K(F))
∼−−−−−→ SpK→k(F)⊠ DBunG,k(SpK→k(F)),

where:

• The left vertical arrow is

(5.21) SpK→k(F)⊠ Spco
K→k(DBunG,K(F))

(4.5)
≃ SpK→k(F ⊠ DBunG,K(F))→

→ SpK→k

(
Pco2
K,k ((∆BunG,K)

fine
∗ (ωBunG,K))

)
,

where the last arrow is obtained by applying PK,k to the canonical map (5.15), which in our
case is

(5.22) F ⊠ DBunG,K(F)→ (∆BunG,K)
fine
∗ (ωBunG,K);

• The right vertical arrow is the map (5.15).

5.5.4. Recall now that due to the validity of Theorem 1.1.7, the functor P is the right adjoint of the
embedding emb.Nilp, see [AGKRRV1, Proposition 17.2.3].

From here, we formally obtain that the functor PK,k provides a right adjoint to the embedding

ShvNilp(BunG,K,k) ↪→ Shv(BunG,K).

We obtain that the commutation of diagram (5.20) is equivalent to the commutation of the following
diagram:

(5.23)

Spco2
K→k

(
(∆BunG,K)

fine
∗ (ωBunG,K)

) Proposition 5.3.8−−−−−−−−−−−→ (∆BunG,k)
fine
∗ (ωBunG,k)x x

SpK→k(F)⊠ Spco
K→k(DBunG,K(F))

∼−−−−−→ SpK→k(F)⊠ DBunG,k(SpK→k(F)),

where:

• The left vertical arrow is

(5.24) SpK→k(F)⊠ Spco
K→k(DBunG,K(F))

(4.5)
≃ Spco2

K→k(F ⊠ DBunG,K(F))→

→ Spco2
K→k(∆BunG,K)

fine
∗ (ωBunG,K),

where the last arrow is obtained by applying PK,k to the canonical map (5.26) below;

• The right vertical arrow is the map (5.26).

5.5.5. Let Y be an algebraic stack. For an object F ∈ Shv(Y)constr there exists a canonical map

(∆Y)!(eY)→ F ⊠ DY(F).

Passing to Verdier duals, we obtain a map

(5.25) F ⊠ DY(F)→ (∆Y)∗(ωY).
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5.5.6. We take Y = BunG and F ∈ Shv(BunG)
c. In this case, the map (5.25) lifts canonically to a

map

(5.26) F ⊠ DBunG(F)→ (∆BunG)fine∗ (ωBunG)

in Shv(BunG×BunG)co2 .

Indeed, both sides in (5.26) belong to the essential image of

(id×ȷ)co,∗ : Shv(BunG×U)→ Shv(BunG×BunG)co2

for a quasi-compact U
ȷ
↪→ BunG, cf. proof of Proposition 5.3.8.

5.5.7. Now, it follows by Verdier duality from (4.9) that the diagram

(5.27)

Spco2
K→k

(
(∆BunG,K)∗(ωBunG,K)

) Proposition 5.3.8−−−−−−−−−−−→ (∆BunG,k)∗(ωBunG,k)x x
SpK→k(F)⊠ Spco

K→k(DBunG,K(F))
∼−−−−−→ SpK→k(F)⊠ DBunG,k(SpK→k(F))

obtained from (5.23) by applying

Ps-Idnv : Shv(BunG,k×BunG,k)co2 → Shv(BunG,k×BunG,k)

does commute.

This formally implies the commutation of (5.23) by the same principle as in the proof of Proposi-
tion 5.3.8.

6. Proofs of the local acyclicity theorems

The goal of this section is to prove the ULA theorems stated in the previous section.

6.1. Proof of Theorem 4.2.2.

6.1.1. Let ∆λ
X,R0

,∇λ
X,R0

∈ Shv(HeckeX,R0) be the standard and costandard objects corresponding to
λ, respectively. I.e., they are, respectively, the !- and *- extensions of the (cohomologically shifted)
constant sheaf on HeckeλX,R0

.

It is enough to show that ∆λ
X,R0

and ∇λ
X,R0

are ULA over BunG,R0 ×
Spec(R0)

XR0 . Indeed, this would

imply that ICλ
X,R0

:= IC
Hecke

λ
X,R0

is also ULA and has the specified restrictions over k (this follows from

the fact that the ULA condition is inherited by the passage to subquotients of perverse cohomologies,
see [HS, Corollary 1.12]).

We will prove the assertion for ∆λ
X,R0

; the assertion for ∇λ
X,R0

will follow by duality.

6.1.2. Let BunFl
G,R0

be the moduli stack whose S-points are:

• An S-point x of XR0 ;

• A G-bundle P on XR0 ×
Spec(R0)

S;

• A reduction to B of the restriction of P along S
(x,id)→ XR0 ×

Spec(R0)
S.

Consider the fiber product
′HeckeX,R0 := BunFl

G,R0
×

BunG,R0

HeckeX,R0 ,

equipped with the maps

BunFl
G,R0

′←h← ′HeckeX,R0

′→h→ BunG,R0 .

It is naturally stratified by locally closed subsets

′Heckeλ
′

X,R0
, λ′ ∈ Λ ≃W\W aff,ext,
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where W aff,ext is the extended affine Weyl group. Denote by ′∆λ′
X,R0

the corresponding standard object.

The pullback of ∆λ
X,R0

along the (smooth) projection

′HeckeX,R0 → HeckeX,R0

admits a filtration with subquotients ′∆λ′
X,R0

for λ′ ∈ Λ projecting to λ ∈ Λ+ ≃ Λ/W .

Hence, order to prove that ∆λ
X,R0

is ULA over BunFl
G,R0

(with respect to both
←
h and

→
h), it suffices to

show that the objects ′∆λ′
X,R0

are ULA over BunFl
G,R0

with respect to ′
←
h and over BunG,R0 with respect

to ′
→
h .

6.1.3. Let HeckeFl
X,R0

be the moduli stack16 whose S-points are:

• An S-point x of XR0 ;

• A pair of G-bundles P and P′ on XR0 ×
Spec(R0)

S;

• Reductions to B of the restrictions of P and P′ along S
(x,id)→ XR0 ×

Spec(R0)
S;

• An isomorphism P|XR0
×

Spec(R0)
S−S ≃ P′|XR0

×
Spec(R0)

S−S .

Denote by
←
hFl and

→
hFl the natural projections

BunFl
G,R0

←
hFl

← HeckeFl
X,R0

→
hFl

→ BunFl
G,R0

.

The prestack HeckeFl
X,R0

is an ind-algebraic stack. It is naturally stratified by locally closed substacks

HeckeFl,w̃
X,R0

, where w̃ runs over W aff,ext.

For a given w̃ ∈ W̃ , let

∆w̃
X,R0

∈ Shv(HeckeFl,w̃
X,R0

)

denote the corresponding standard object (i.e., the !-extension of the constant sheaf on HeckeFl,w̃
X,R0

).

6.1.4. We have a Cartesian diagram

HeckeFl
X,R0

−−−−−→ ′HeckeX,R0)

→
hFl

y y′→h
BunFl

G,R0
−−−−−→ BunG,R0

with the horizontal maps being smooth and proper.

The object ′∆λ′
X,R0

∈ Shv(′HeckeX,R0)) is isomorphic (up to a cohomological shift) to the direct image

of ∆w̃
X,R0

∈ Shv(HeckeFl
X,R0

) for any w̃ ∈W aff,ext that projects to λ′ under W aff,ext →W\W aff,ext ≃ Λ.

Hence, it is enough to show that the objects ∆w̃
X,R0

are ULA over BunFl
G,R0

×
Spec(R0)

XR0 for both
←
hFl

and
→
hFl.

16Here “Fl” stands for “affine flags”, as opposed to the usual Hecke stack, which is modeled on the affine
Grassmannian.
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6.1.5. We argue by induction on the length ℓ(w̃).

When ℓ(w̃) = 0, the map

HeckeFl,w̃
X,R0

←
h×s or

→
h×s−→ BunFl

G,R0
×

Spec(R0)
XR0

is an isomorphism, and there is nothing to prove.

When ℓ(w̃) = 1, the map

HeckeFl,w̃
X,R0

←
h×s or

→
h×s−→ BunFl

G,R0
×

Spec(R0)
XR0

is smooth fibration with fibers isomorphic to A1. Similarly, the closure

HeckeFl,w̃
X,R0

⊃ HeckeFl,w̃
X,R0

is a smooth fibration

HeckeFl,w̃
X,R0

←
h×s or

→
h×s−→ BunFl

G,R0
×

Spec(R0)
XR0

with fibers isomorphic to P1.

Hence, the object ∆w̃
X,R0

is a cone of a map between constant sheaves on schemes that are smooth

over BunFl
G,R0

×
Spec(R0)

XR0 . Hence, it is ULA.

6.1.6. For w̃ of length ≥ 2, choose a decomposition

w̃ = w̃1 · w̃2, ℓ(w̃) = ℓ(w̃1) + ℓ(w̃2).

Consider the convolution diagram

BunFl
G,R0

×
Spec(R0)

XR0

HeckeFl
X,R0

BunFl
G,R0

×
Spec(R0)

XR0

HeckeFl
X,R0

BunFl
G,R0

×
Spec(R0)

XR0 .

HeckeFl
X,R0

×
→
h ,BunFl

G,R0
×

Spec(R0)
XR0

,
←
h

HeckeFl
X,R0

←
h×s

��

→
h×s

��

←
h×s

��

→
h×s

��

′←h

��

′→h

��

By the induction hypothesis, the object

(6.1) ∆w̃1
X,R0
⊠̃∆w̃2

X,R0
:= (′

←
h)∗(∆w̃1

X,R0
)
∗
⊗ (′
→
h)∗(∆w̃2

X,R0
) ∈ Shv(HeckeFl

X,R0
×

→
h ,BunFl

G,R0
,
←
h

HeckeFl
X,R0

)

is ULA with respect to both

(
←
h × s) ◦ ′

←
h and (

→
h × s) ◦ ′

→
h.
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6.1.7. Consider the convolution map

conv : HeckeFl
X,R0

×
→
h ,BunFl

G,R0
×

Spec(R0)
XR0

,
←
h

HeckeFl
X,R0

→ HeckeFl
X,R0

×
Spec(R0)

XR0

so that

(
←
h × s) ◦ ′

←
h = (

←
h × s) ◦ conv and (

→
h × s) ◦ ′

→
h = (

→
h × s) ◦ conv .

We obtain that

∆w̃1
X,R0
⊠̃∆w̃2

X,R0

is ULA with respect to both

(
←
h × s) ◦ conv and (

→
h × s) ◦ conv .

Since the map conv is proper, we obtain that

∆w̃1
X,R0

⋆∆w̃2
X,R0

:= conv!(∆
w̃1
X,R0
⊠̃∆w̃2

X,R0
)

is ULA with respect to both
←
h × s and

→
h × s.

6.1.8. Now, since the map conv induces an isomorphism

HeckeFl,w̃1
X,R0

×
→
h ,BunFl

G,R0
,
←
h

HeckeFl,w̃2
X,R0

→ HeckeFl,w̃
X,R0

,

we obtain that

∆w̃1
X,R0

⋆∆w̃2
X,R0

≃ ∆w̃
X,R0

.

Hence, ∆w̃
X,R0

is also ULA as required.
□[Theorem 4.2.2]

6.2. The key mechanism. We now proceed with the proofs of Theorems 4.4.5 and 5.1.3. The proof
will be based on the contraction principle, embodied by Proposition 6.2.2 below.

6.2.1. We place ourselves again in the situation of [DG2], over an arbitrary Noetherian base S (i.e.,
this is a generalization of the context of Sect. 5.2.4, where instead of Spec(R0) we have a more general
S).

We claim:

Proposition 6.2.2. Let F ∈ Shv(U) be ULA over S. Then so is j!(F) ∈ Shv(Y).

Proof. Repeats the proof of Proposition 5.2.5.
□

Remark 6.2.3. The assertion of Proposition 6.2.2 replicates that of [HHS, Theorem 6.1.3]17. We refer
the reader to loc. cit. where the proof is written out in detail.

Remark 6.2.4. As a side remark, we observe that Proposition 6.2.2 allows us to give an alternative
proof of Theorem 4.2.2:

We can show that the objects ∆λ
X,R0

are ULA by reducing to a contractive situation as in the original
Kazhdan-Lusztig paper [KL], by intersecting with the opposite Schubert strata.

6.3. Proof of Theorem 4.4.5. The proof below is inspired by the computation of IC stalks in [BFGM],
and follows the same line of thought as that in [HHS, Theorem 6.2.1].

17We are grateful to L. Hamann for pointing this out to us.
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6.3.1. Let M denote the Levi quotient of P−. Let J ⊂ I be the subset of the Dynkin diagram of G
that corresponds to the roots inside M .

Denote by Λpos
G,P the monoid equal to the non-negative integral span of αi, i ∈ (I − J). We endow

it with the standard order relation.

Recall (see [BG1, Sect. 1.3.3]) that B̃unP− carries a stratification indexed by elements of Λpos
G,P ,

B̃unP− = ∪
θ∈Λpos

G,P

(B̃unP−)θ,

with the open stratum (B̃unP−)0 being BunP− .

For a given θ, let

(B̃unP−)<θ ⊂ B̃unP− and (B̃unP−)≤θ ⊂ B̃unP−

be the open substacks

∪
θ′<θ

(B̃unP−)θ′ and ∪
θ′≤θ

(B̃unP−)θ′ ,

respectively.

We will prove Theorem 4.4.5 by induction on θ. The base of the induction is when θ = 0, in which

case (B̃unP−)≤θ = BunP− , which is smooth over BunM,R0 , and the ULA property18 is obvious.

Thus, we will assume that the ULA statement holds for

j!(eBun
P−,R0

)|(B̃un
P−,R0

)<θ

and we will deduce its validity for

j!(eBun
P−,R0

)|(B̃un
P−,R0

)≤θ
.

6.3.2. Consider the parabolic Zastava space Zast, see Sect. 9.3.7 below. Pulling back the above
stratification along the projection

Zast→ B̃unP− ,

we obtain a stratification on Zast. We denote by

Zastθ, Zast≤θ, Zast<θ

the corresponding substacks.

Denote
◦

Zast := Zast0 = Zast ×
B̃un

P−

BunP− .

Denote by jZast the open embedding
◦

Zast ↪→ Zast.

Recall also that Zast splits as a disjoint union

Zast := ⊔
θ∈Λpos

G,P

Zastθ .

18For the duration of this proof, “ULA” means “ULA over BunM,R0
”.
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6.3.3. Arguing as in [BFGM, Sect. 5] or [Ga4, Sect. 3.9], we obtain:

Lemma 6.3.4.

(a) The ULA property of j!(eBun
P−,R0

)|(B̃un
P−,R0

)<θ
implies the ULA property of

(jZast)!(e ◦
ZastR0

)|(ZastR0 )<θ
.

(b) The following statements are equivalent:

(i) j!(eBun
P−,R0

)|(B̃un
P−,R0

)≤θ
is ULA;

(ii) (jZast)!(e ◦
ZastR0

)|(ZastR0 )≤θ
is ULA;

(iii) (jZast)!(e ◦
ZastR0

)|(Zastθ
R0

)≤θ
is ULA.

6.3.5. Let us denote by j<θ,≤θ the open embedding

Zastθ<θ ↪→ Zastθ≤θ .

Note that the complement of this embedding is the closed stratum Zastθθ ⊂ Zastθ≤θ.

Thus, we have to show

(6.2) (jZast)!(e ◦
ZastR0

)|(Zastθ
R0

)<θ
is ULA ⇒ (j<θ,≤θ)!

(
(jZast)!(e ◦

ZastR0

)|(Zastθ
R0

)<θ

)
is ULA .

6.3.6. Recall now (see [BFGM, Sect. 5.1]) that Zastθ = Zastθ≤θ carries an action of Gm that contracts

it onto the locus Zastθθ.

Since the object (jZast)!(e ◦
ZastR0

)|(Zastθ
R0

)<θ
is Gm-equivariant, the implication (6.2) follows from

Proposition 6.2.2.
□[Theorem 4.4.5]

6.4. Proof of Theorem 5.1.3. It is easy to reduce the assertion to the case when G is semi-simple,
which we will now assume.19

6.4.1. Recall that according to [Sch], the diagonal map

∆ : BunG → BunG×BunG

can be factored as

BunG = BunG×pt→ BunG×pt /ZG
j
↪→ BunG

∆→ BunG×BunG,

where the map j is an open embedding and ∆ is proper.

6.4.2. Example. For G = SL2, the stack BunG classifies triples

(E1,E2, α)/Gm,

where E1 and E2 rank-2 bundles with trivialized determinants, and α is a non-zero map E1 → E2. The
action of Gm is given by scaling α.

The open locus BunG×pt /ZG corresponds to the condition that α be an isomorphism.

6.4.3. Thus, it suffices to show that the object

(6.3) j!(eBunG,R0
⊠RZG) ∈ Shv(BunG,R0)

is ULA over Spec(R0), where

RZG ∈ Rep(ZG)→ Shv(Spec(R0)/ZG)

denotes the regular representation.

19Otherwise replace RZG
below by the !-direct image of e along the map pt → pt /ZG.
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6.4.4. Recall (see [Sch, Sect. 2.2.7]) that stack BunG admits a stratification indexed by the poset of
standard parabolics in G:

BunG = ∪
P
BunG,P

with the open stratum BunG,G being the image of the embedding j.

Denote by BunG,≥P (resp., BunG,>P ) the open substack equal to the union of the strata correspond-
ing to the parabolics P ′ with P ⊂ P ′ (resp., P ⊊ P ′).

We argue by induction and assume that the object (6.3) is ULA when restricted to the open sub-

stack BunG,>P,R0 . We now perform the induction step and prove that the ULA property holds over

BunG,≥P,R0 .

6.4.5. Consider the stratum BunG,P . According to [Sch, Sect. 3] that BunG,P admits a further
stratification indexed by elements of Λpos

G,P :

BunG,P = ∪
θ∈Λpos

G,P

(BunG,P )θ.

For a given θ, let

(BunG,P )<θ ⊂ (BunG,P )≤θ

be the corresponding open subsets.

In particular, we have the open locus

(BunG,P )0 ⊂ BunG,P .

6.4.6. Example. In the example of G = SL2, the Borel stratum corresponds to the condition that the
map α has generic rank 1 and hence factors as

E1

β1
↠ L1

γ→ L2
β2
↪→ E2,

where Li are line bundles and βi are bundle maps.

The stratification by Λpos
G,P = Z≥0 is given by the total degree of zeroes of the map γ.

6.4.7. Denote by BunG,≥P,<θ and BunG,≥P,≤θ the open substacks

BunG,>P ∪ (BunG,P )<θ and BunG,>P ∪ (BunG,P )≤θ,

respectively.

By induction, we can assume that (6.3) is ULA20 when restricted to BunG,≥P,<θ,R0 . We will now

perform the induction step and prove that the ULA property holds over BunG,≥P,≤θ,R0 .

Remark 6.4.8. The rest of the argument, which is explained below, uses the same principle as the
proof of Theorem 4.4.5: we will replace BunG,≥P,R0 by its local model and reduce the assertion to a
contractive situation (i.e., one covered by Proposition 6.2.2).

6.5. Proof of Theorem 5.1.3, continuation.

6.5.1. Let Y P denote the open substack(
BunP ×

BunG

BunG ×
BunG

BunP−

)tr

⊂ BunP ×
BunG

BunG ×
BunG

BunP− ,

where the superscript “tr” refers to the generic transversality condition, see [Sch, Sect. 6.1.6].

20For the duration of this proof, “ULA” means “ULA over Spec(R0).
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6.5.2. Example. For G = SL2, the fiber product

BunP ×
BunG

BunG ×
BunG

BunP−

classifies the data of

L
′
1

δ1→ E1
α→ E2

δ2→ L
′
2,

where δi are bundle maps.

The generic transversality condition is that the composite map L′1 → L′2 be non-zero.

6.5.3. The stratifications on BunG induce the corresponding stratifications on Y P , to be denoted Y P
P ′ ,

Y P
P ′,θ, etc. We note that Y P

P ′ = ∅ unless P ⊂ P ′.

Note that the open stratum Y P
G identifies with

◦
Zast× pt /ZG.

Denote by jY the open embedding

◦
Zast× pt /ZG ↪→ Y P .

In addition, Y P splits as a disjoint union

(6.4) Y P := ⊔
θ∈Λpos

G,P

Y P,θ,

and Y P,θ
P,θ′ is empty unless θ′ ≤ θ.

6.5.4. Example. In the example of G = SL2, the decomposition (6.4) is according to the total degree
of zeroes of the map L′1 → L′2.

6.5.5. The following is parallel to Lemma 6.3.4:

Lemma 6.5.6.

(a) The ULA property of

j!(eBunG,R0
⊠RZG)|BunG,≥P,<θ,R0

implies the ULA property of

(jY )!(e ◦
ZastR0

⊠RZG)|Y P
≥P,<θ,R0

.

(b) The following conditions are equivalent:

(i) j!(eBunG,R0
⊠RZG)|BunG,≥P,≤θ,R0

is ULA;

(ii) (jY )!(e ◦
ZastR0

⊠RZG)|Y P
≥P,≤θ,R0

is ULA;

(iii) (jY )!(e ◦
ZastR0

⊠RZG)|
Y

P,θ
≥P,≤θ,R0

is ULA.

6.5.7. Let j≥P,<θ,≤θ the open embedding

Y P,θ
≥P,<θ ↪→ Y P,θ

≥P,≤θ.

Note that the complement of this embedding is the closed stratum

Y P,θ
P,θ ⊂ Y P,θ

≥P,≤θ.
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6.5.8. Example. In the example of G = SL2, the closed substack Y P,θ
P,θ is the locus where the maps

L
′
1 → L1 and L2 → L

′
2

are isomorphisms.

So Ei = Li ⊕ L⊗−1
i , and the map α is

E1 ≃ L1 ⊕ L
⊗−1
1 ↠ L1 → L2 ↪→ L2 ⊕ L

⊗−1
2 .

Thus, we obtain that Y P,θ
P,θ is isomorphic to a version of the Hecke stack for Gm: it classifies pairs

(L1, D), where L1 is a line bundle and D is an effective divisor on X of degree θ.

6.5.9. Thus, we have to show:

(jY )!(e ◦
ZastR0

⊠RZG)|
Y

P,θ
≥P,<θ,R0

is ULA ⇒ (j≥P,<θ,≤θ)!

(
(jY )!(e ◦

ZastR0

⊠RZG)|
Y

P,θ
≥P,<θ,R0

)
is ULA.

6.5.10. Recall now (see [Sch, Sect. 6.5.5]) that Y P,θ
≥P,≤θ carries an action of Gm, which contracts its

into Y P,θ
P,θ .

6.5.11. Example. In the example of G = SL2, the above action is the following one. A scalar c ∈ Gm

acts on the triple

L
′
1

δ1→ E1
α→ E2

δ2→ L
′
2

by

δ1 7→ c−1 · δ1, δ2 7→ c−1 · δ2, α 7→ c2 · α.

6.5.12. Since the object

(jY )!(e ◦
ZastR0

⊠RZG)|Y P
≥P,<θ,R0

∈ Shv(Y P
≥P,<θ,R0

)

is quasi-equivariant with respect to this Gm-action (i.e., equivariant after passing to a finite self-isogeny
of Gm), the required assertion follows from Proposition 6.2.2.

□[Theorem 5.1.3]

7. Proof of Theorem 4.4.2

We will give two proofs. The first proof is shorter, but it requires more stringent assumptions on
the characteristic of the ground field k (see Assumption (*) in Sect. 7.1.3 and Remark 7.1.5).

7.1. First proof of Theorem 4.4.2.

7.1.1. Let

exp⊠I /T ∈ Shv(GI
a/T )

be as in [GLC1, Sect. 3.3], where I is the Dynkin diagram of G (see also Sect. 8.4.11 below).

Recall that we have a canonically defined T -equivariant map

χI : BunN,ρ(ωX ) → GI
a,

and consider the corresponding map

χI/T : BunN,ρ(ωX ) /T → GI
a/T.

Denote

expχI /T := (χI/T )∗(exp⊠I /T ) ∈ Shv(BunN,ρ(ωX ) /T ).

Recall the map

p : BunN,ρ(ωX ) → BunG

and note that it naturally factors via a map

p/T : BunN,ρ(ωX ) /T → BunG .
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Recall that the object PoincVac
! is defined as

(p/T )!(expχI /T ) ∈ Shv(BunG).

7.1.2. We consider the above objects over Spec(R0). The object exp⊠I
R0

/T is ULA over Spec(R0) (e.g.,

by Proposition 6.2.2). Since the map χI/T is smooth, we obtain that

expχI ,R0
/T ∈ Shv(BunN,ρ(ωX ),R0

/T )

is also ULA.

For the rest of the first proof, we will consider separately the cases of g ≥ 2, g = 1 and g = 0.

7.1.3. We will make the following assumption on the pair (G, char(p)):

(*) For every standard Levi M and a central character µ̌ of ZM , the direct summand (nP )µ̌, viewed as
a representation of M , has strangeness 0 (see [DG1, Definition 10.3.4] for what this means).

Remark 7.1.4. As was explained in loc. cit., the above assumption is automatic when one works over
a ground field of characteristic 0.

Remark 7.1.5. According to [IMP, Theorem 3.1], the following condition guarantees that Assumption
(*) is satisfied:

We need that for all M and all roots α̌ appearing in nP ,

2 · ⟨ρM , α̌⟩ · |Z0
M ∩ [M,M ]| < p.

In the above formula, the factor |Z0
M ∩ [M,M ]| appears since in [IMP] only representations with

trivial determinant are allowed.

7.1.6. We proceed with the first proof of Theorem 4.4.2. We start with the case g ≥ 2.

Note that the map p/T factors as

BunN,ρ(ωX ) /T → Bun
(≤(2g−2)·ρ)
G

ȷ(2g−2)·ρ
↪→ BunG,

where the first arrow is proper (see [DG1, Theorem 7.4.3(a)]).

Hence, it suffices to show that the functor

(ȷ(2g−2)·ρ)! : Shv(Bun
(≤(2g−2)·ρ)
G,R0

)→ Shv(BunG,R0)

preserves the property of being ULA over Spec(R0).

We now use Assumption (*). It implies that the complement of the embedding

Bun
(≤(2g−2)·ρ)
G

ȷ(2g−2)·ρ
↪→ BunG

is contractive, see [DG1, Proposition 10.1.3].

Hence, the required preservation of the ULA property follows from Proposition 6.2.2.

7.1.7. We now consider the case g = 1. In this case, the map p/T factors as

(7.1) BunN,ρ(ωX ) /T → Bun
(≤0)
G

ȷ0
↪→ BunG .

Note that Bun
(≤0)
G is the semi-stable locus Bunss

G ⊂ BunG. We factor the first arrow in (7.1) as

BunN,ρ(ωX ) /T
ω is trivial≃ BunN /T ↪→ Bun0

B → Bunss
G ,

where the second arrow is a closed embedding, and Bun0
B is the preimage of the neutral connected

component of BunT under q : BunB → BunT .

Note that the map

Bun0
B → Bunss

G

is proper (indeed, Bun0
B = Bun0

B ×
BunG

Bunss
G → Bun

0
B ×

BunG

Bunss
G is an equality).
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Hence, the first arrow in (7.1) is proper. Therefore, it remains to show that the functor

(ȷ0)! : Shv(Bun
(≤0)
G,R0

)→ Shv(BunG,R0)

preserves the property of being ULA over Spec(R0).

However, in genus 1, the complement of Bun
(≤0)
G in BunG is contractive (by Assumption (*) and

[DG1, Proposition 10.1.3]). Hence, the assertion follows from Proposition 6.2.2.

7.2. Proof of Proposition 4.4.2 in genus 0. It remains to consider the case of g = 0. Here the
argument will be of different nature and in fact can be considered as a simplified version of the second
proof relying on special features of the genus 0 situation.

7.2.1. We will show directly that

Φ(PoincVac
!,R0

) = 0

(which is what we need for Property (C)).

However, by Remark 4.1.10, this is equivalent to the fact that PoincVac
!,R0

is ULA over Spec(R0).

7.2.2. Note that the direct sum of the constant terms functors

CTλ
∗ : Shv(BunG)→ Shv(Bunλ

T ), λ ∈ Λ+

is conservative when g = 0.

Hence, it suffices to show that

CTλ
∗ ◦Φ(PoincVac

!,R0
) = 0, λ ∈ Λ+.

7.2.3. Recall also that according to [DG2], we have a canonical isomorphism

(7.2) CTλ
∗ ≃ CT−,λ

! .

We claim now that the canonical maps

CT−,λ
! ◦Φ→ Φ ◦ CT−,λ

!

are isomorphisms when λ ∈ Λ+.

Indeed, the functor CT−,λ
! is given by

(q−)! ◦ (p−)∗

for the diagram

BunG
p−← Bunλ

B−
q−→ Bunλ

T .

Now, for λ ∈ Λ+, the map p− is smooth, and hence the functor (p−)∗ commutes with vanishing
cycles. The functor (q−)! commutes with vanishing cycles thanks to the contraction principle (see
[DG2, Sect. 4.1]) and isomorphism (5.2).

7.2.4. Thus, it suffices to show that

Φ ◦ CT−,λ
! (PoincVac

!,R0
) = 0.

However, this is the assertion of (7.6) below.
□[Theorem 4.4.2]

7.3. Second proof of Theorem 4.4.2. It is easy to reduce the assertion to the case when G is
semi-simple, so we will make this assumption.

7.3.1. Recall (see Remark 4.1.10) that we have to show that

(7.3) Φ(PoincVac
!,R0

) = 0.
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7.3.2. Recall that we have the semi-orthogonal decomposition of the category Shv(BunG)

Shv(BunG)Eis

eEis
↪→ Shv(BunG)

ecusp
←↩ Shv(BunG)cusp.

Thus, every object F ∈ Shv(BunG) fits into a (canonically defined) fiber sequence

eEis ◦ eR
Eis(F)→ F → ecusp ◦ eL

cusp(F).

Furthermore,

eR
Eis(F) = 0 if and only if CT∗(F) = 0 for all proper parabolics P ⊂ G.

7.3.3. We will show that

(7.4) eL
cusp(Φ(Poinc

Vac
!,R0

)) = 0

and

(7.5) CT∗(Φ(Poinc
Vac
!,R0

)) = 0.

By the above, this will imply (7.3).

7.4. The Eisenstein part. We first tackle (7.5).

7.4.1. First, we claim:

Proposition 7.4.2. The natural transformation

Ψ ◦ CT∗ → CT∗ ◦Ψ

is an isomorphism.

Proof. Using Beilinson’s definition of nearby cycles, the functor Ψ is the colimit of functors

i∗0 ◦ (j0)∗((−)⊗ E),

where:

• The maps i0 and j0 are Spec(k) → Spec(R0) and Spec(K0) → Spec(R0) and base changes
thereof;

• E is a local system on Spec(K0) or a pullback thereof.

We claim that the operation CT∗ commutes with all the three functors involved:

(i) The commutation with (−)⊗ E is obvious;

(ii) The commutation with the functor (j0)∗ is also obvious, since CT∗ involves !-pullbacks and *-
pushforwards.

(iii) In order to establish the commutation with i∗0, we apply the isomorphism (7.2), and rewrite CT∗ as
CT−! . Now again the commutation becomes obvious, since CT−! involves *-pullback and !-pushforward.

□

Remark 7.4.3. Note that a variation of this argument shows that the natural transformation

Sp ◦CT∗ → CT∗ ◦Sp

is an isomorphism.

Corollary 7.4.4. The natural transformation

Φ ◦ CT∗ → CT∗ ◦Φ

is an isomorphism.

Proof. Follows from the fiber sequence

Φ→ Ψ→ i!,

where the functor i! obviously commutes with CT∗.
□
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7.4.5. By Corollary 7.4.4, it suffices to show that

Φ ◦ CT∗(PoincVac
!,R0

)) = 0.

We use again the isomorphism (7.2), and we rewrite

CT∗(Poinc
Vac
!,R0

) ≃ CT−! (Poinc
Vac
!,R0

).

Thus, we have to prove:

(7.6) Φ ◦ CT−! (Poinc
Vac
!,R0

) = 0.

We claim:

Theorem 7.4.6. There is a canonical isomorphism

(translρP (ωX ))
∗ ◦ CT−! (Poinc

Vac
G,! )[d] ≃ Fact(Ωloc) ⋆ PoincVac

M,!,

where:

• translρP (ωX ) is the automorphism of BunM given by translation by ρP (ωX) ∈ BunZM ;

• The integer d is as in [GLC3, Corollary 10.1.8];

• The functor (Fact(Ωloc) ⋆ (−)) is as in Theorem 9.2.7.

The assertion of Theorem 7.4.6 is obtained from that of Theorem 9.2.7 proven below by a duality
manipulation (see [GLC3, Corollary 10.1.8]).

Remark 7.4.7. Alternatively, one can prove Theorem 7.4.6 by rerunning the argument of Theorem 9.2.7.

However, the proof is simpler as here one works with the open Zastava space
◦

Zast and one does not
need any local acyclicity assertions.

7.4.8. Thus, we have to show that

Φ(Fact(Ωloc) ⋆ PoincVac
M,!,R0

) = 0.

By Proposition 4.2.5,

Φ(Fact(Ωloc) ⋆ PoincVac
M,!,R0

) ≃ Fact(Ωloc) ⋆ Φ(PoincVac
M,!,R0

).

Now, by induction on the semi-simple rank, we can assume that Φ(PoincVac
M,!,R0

) = 0, and the assertion
follows.

7.5. The cuspidal part.

7.5.1. The statement that we want to prove is that the map

(7.7) eL
cusp(Poinc

Vac
!,k ) ≃ eL

cusp ◦ i∗0(PoincVac
!,R0

)→ eL
cusp ◦Ψ(PoincVac

!,K0
)

is an isomorphism.

Thanks to Theorem 4.4.5, the functors i∗0, j0,∗, and Ψ are defined on the cuspidal category, viewed
as a quotient of Shv(BunG), i.e., in a way that commutes with the projection

eL
cusp : Shv(BunG)→ Shv(BunG)cusp.
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7.5.2. Recall that PoincVac
! ∈ Shv(BunG) was defined as

(p/T )!(expχI /T ) := (χI/T )∗(exp⊠I /T ),

where exp⊠I /T is as in [GLC1, Sect. 3.3].

We will now change the notations

exp⊠I /T ⇝ exp⊠I
! /T and expχI /T ⇝ expχI ,! /T

and we note that there exists another object

exp⊠I
∗ /T ∈ Shv(GI

a/T ),

see Sect. 8.4.11.

In addition, there is a canonically defined map

(7.8) exp⊠I
! /T → exp⊠I

∗ /T,

see (8.8).

7.5.3. Denote

expχI ,∗ /T := (χI/T )∗(exp⊠I
∗ /T ).

Let

PoincVac
∗ ∈ Shv(BunG)

be the object equal to

(p/T )∗(expχI ,∗ /T ).

The map (7.8) gives rise to a map

(7.9) PoincVac
! → PoincVac

∗ .

We will prove:

Theorem 7.5.4. The cone of (7.9) belongs to Shv(BunG)Eis.

Actually, the proof shows more, namely that for any G ∈ Shv(Spec(R0)), the morphism

(7.10) pR0,!(π
∗
BunN,ρ(ω),R0

(G)
∗
⊗ expχI ,! /T )→ pR0,∗(π

∗
BunN,ρ(ω),R0

(G)
∗
⊗ expχI ,∗ /T )

has cone lying in Shv(BunG,R0)Eis; here πBunN,ρ(ω),R0
is the projection from BunN,ρ(ω),R0

to Spec(R0).

The proof of Theorem 7.5.4 will be given in Sect. 8. We now proceed with the proof of the fact that
(7.7) is an isomorphism.

7.5.5. Take E to be a lisse sheaf on Spec(K0). We have a commutative diagram

(7.11)

PoincVac
!,R0

∗
⊗j0,∗(E) j0,∗(Poinc

Vac
!,K0

∗
⊗E)

PoincVac
∗,R0

∗
⊗j0,∗(E) j0,∗(Poinc

Vac
∗,K0

∗
⊗E).

The vertical arrows have Eisenstein cones by Theorem 7.5.4. Moreover, the composition from upper
left to bottom right has Eisenstein cone by the property of (7.10) stated above. Therefore, each arrow
in the above square becomes an isomorphism after applying eL

cusp.

Applying i∗0, we obtain a similar diagram

(7.12)

i∗0(Poinc
Vac
!,R0

)
∗
⊗i∗0 ◦ j0,∗(E) i∗0 ◦ j0,∗(PoincVac

!,K0

∗
⊗E)

i∗0(Poinc
Vac
∗,R0

)
∗
⊗i∗0 ◦ j0,∗(E) i∗0 ◦ j0,∗(PoincVac

∗,K0

∗
⊗E)
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in which again all arrows have Eisenstein cones. By Beilinson’s construction of nearby cycles, we can
pass to a colimit of such E’s so that the top horizontal arrow in the above diagram becomes the map

i∗0(Poinc
Vac
!,R0

) = i∗0(Poinc
Vac
!,R0

)⊗Ψ(eSpec(K0))→ Ψ(PoincVac
!,K0

),

which we deduce has Eisenstein cone.

8. Comparison of !- vs *- Poincaré objects

The goal of this section is to prove Theorem 7.5.4. We continue to assume that G is semi-simple.

8.1. The case when there exists the exponential sheaf. Note that we only used Theorem 7.5.4
over K and R. However, we will first give a proof over a field of positive characteristic (or for D-modules),
since it conveys the intuitive picture.

Remark 8.1.1. In the course of the proof, we will see that the cone of (7.9) admits a canonical filtration,
whose associated graded can be described explicitly, see Remark 8.2.8.

.

8.1.2. We start by rewriting the objects

(8.1) exp⊠I
! /T and exp⊠I

∗ /T

in terms of the exponential sheaf21.

Namely, we start with

exp⊠I ∈ Shv(GI
a)

(here I is the set of vertices of the Dynkin diagram) and the objects (8.1) are its !- and *- direct images,
respectively, along the map

GI
a → GI

a/T.

8.1.3. Consider the stack

BunN,ρ(ω) × (A1)I .

Let f denote the projection

BunN,ρ(ω) × (A1)I → BunN,ρ(ω).

We consider the canonical T -action on BunN,ρ(ω) × (A1)I , where the action on the second factor is
via

T → Tadj
simple roots
≃ GI

m.

Let f/T denote the projection

(BunN,ρ(ω) × (A1)I)/T → BunN,ρ(ω)/T.

8.1.4. Let j denote the open embedding

BunN,ρ(ω) × (A1 − 0)I ↪→ BunN,ρ(ω) × (A1)I .

and j/T the embedding

BunN,ρ(ω)/ZG ≃ (BunN,ρ(ω) × (A1 − 0)I)/T ↪→ (BunN,ρ(ω) × (A1)I)/T.

We can rewrite

(8.2) PoincVac
? ≃ (p/T )? ◦ (f/T )? ◦ (j/T )? ◦ (πZG)? ◦ j? ◦ (χI)∗(exp⊠I),

where:

• ? is either ! or ∗;
• j denote the embedding BunN,ρ(ω) ↪→ BunN,ρ(ω);

• πZG denotes the projection BunN,ρ(ω) → BunN,ρ(ω)/ZG.

21The definition of these objects in Sect. 8.4.11 uses the Kirillov model and hence avoids the exponential sheaf.
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Note that:

• The map p/T is proper, so (p/T )! → (p/T )∗ is an isomorphism;

• The map πZG is finite22, so (πZG)! → (πZG)∗ is an isomorphism;

• The extension of (χI)∗(exp⊠I) along j is clean, so the map

j! ◦ (χI)∗(exp⊠I)→ j∗ ◦ (χI)∗(exp⊠I)

is an isomorphism.

8.1.5. We can talk about the full category

Whitext(BunN,ρ(ω) × (A1)I) ⊂ Shv(BunN,ρ(ω) × (A1)I),

where the “extended Whittaker condition” depends in the point in (A1)I (we think of this (A1)I as the
variety of characters of GI

a), see Sect. 8.3.1.

Remark 8.1.6. The notation Whitext (and the idea thereof) is borrowed from [Ga2, Sect. 8], where the
extended Whittaker category is studied.

8.1.7. We can also consider the corresponding equivariant version

Whitext(BunN,ρ(ω) × (A1)I)T ⊂ Shv(BunN,ρ(ω) × (A1)I)T .

We will prove:

Proposition 8.1.8. For F ∈ Whitext(BunN,ρ(ω) × (A1)I)T , supported off BunN,ρ(ω) × (A1 − 0)I , the
object

(p/T )! ◦ (f/T )!(F) ∈ Shv(BunG)

is Eisenstein.

Proposition 8.1.9. For F ∈Whitext(BunN,ρ(ω) × (A1)I), the map

f!(F)→ f∗(F)

is an isomorphism.

It is clear that the combination of these two propositions implies that (7.9) is Eisenstein.

8.2. Proof of Proposition 8.1.8.

8.2.1. For a subset J ⊂ I, let

iJ : (BunN,ρ(ω) × (A1 − 0)J) ⊂ (BunN,ρ(ω) × (A1)I)

be the embedding of the corresponding stratum, so that iI = j.

Denote by

Whitpart(BunN,ρ(ω) × (A1 − 0)J) ⊂ Shv(BunN,ρ(ω) × (A1 − 0)J)

and

Whitpart(BunN,ρ(ω) × (A1 − 0)J)T ⊂ Shv(BunN,ρ(ω) × (A1 − 0)J)T .

the corresponding subcategories, obtained by imposing the Whittaker-type equivariance condition.

Remark 8.2.2. The notation Whitpart (and the idea thereof) is borrowed from [Ga2, Sect. 7].

8.2.3. We will show that the functor

(p/T )! ◦ (f/T )! ◦ (iJ/T )! : Whitpart(BunN,ρ(ω) × (A1 − 0)J)T → BunG

factors through the subcategory generated by

Eis! : Shv(BunM )→ Shv(BunG),

where P is the standard parabolic corresponding to J .

22Recall that G was assumed semi-simple.
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8.2.4. We stratify BunN,ρ(ω) by (BunN,ρ(ω))λ, λ ∈ Λpos,

(BunN,ρ(ω))λ ≃ BunB ×
BunT

X(λ),

where X(λ) → BunT is the Abel-Jacobi map, shifted by ρ(ωX). Let iλ denote the corresponding locally
closed embedding.

Consider the corresponding subcategories

Whitpart((BunN,ρ(ω))λ × (A1 − 0)J) ⊂ Shv((BunN,ρ(ω))λ × (A1 − 0)J)

and

Whitpart(BunN,ρ(ω))λ × (A1 − 0)J)T ⊂ Shv((BunN,ρ(ω))λ × (A1 − 0)J)T .

We will show that the functor

(p/T )! ◦ (f/T )! ◦ (iJ/T )! ◦ (iλ/T )! : Whitpart((BunN,ρ(ω))λ × (A1 − 0)J)T → BunG

factors as

Whitpart((BunN,ρ(ω))λ × (A1 − 0)J)T → BunM
Eis!→ BunG .

8.2.5. Note that the map(
(BunN,ρ(ω))λ × (A1 − 0)J

)
/T

(p/T )◦(f/T )◦(iJ/T )◦(iλ/T )−→ BunG

factors as (
(BunN,ρ(ω))λ × (A1 − 0)J

)
/T

fP−→ BunP
pP−→ BunG .

Moreover, we have a Cartesian diagram

(
(BunN,ρ(ω))λ × (A1 − 0)J

)
/T

≃
y(

(BunB ×
BunT

X(λ))× (A1 − 0)J
)
/T

′qP−−−−−→
(
(BunB(M) ×

BunT

X(λ))× (A1 − 0)J
)
/T

fP

y y′fP
BunP

qP−−−−−→ BunM

pP

y
BunG

and every object from Whitpart
(
(BunN,ρ(ω))λ × (A1 − 0)J

)T
is isomorphic to the *-pullback by means

of ′qP of an object in

Shv

((
(BunB(M) ×

BunT

X(λ))× (A1 − 0)J
)
/T

)
.

8.2.6. Now,

(8.3) (p/T )! ◦ (f/T )! ◦ (iJ/T )! ◦ (iλ/T )! ◦ (′qP )∗ ≃
≃ (pP )! ◦ (fP )! ◦ (′qP )∗ ≃ (pP )! ◦ (pP )∗ ◦ (′fP )! ≃ Eis! ◦ (′fP )!

(up to a cohomological shift23), as required.
□[Proposition 8.1.8]

23Which is involved in the definition of Eis!.
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Remark 8.2.7. We have obtained that the cone of (7.9) admits a canonical filtration indexed by ∅ ≠
J ⊂ I, where the subquotient corresponding to a given J in turn has a filtration indexed by λ ∈ Λpos,
and its subquotient corresponding to a given λ is given by

(8.4) Eis!
(
(′fP )! ◦ (′qP )∗ ◦ (iλ/T )∗ ◦ (iJ/T )∗ ◦ (j/T )∗ ◦ (πZG)! ◦ j! ◦ (χI)∗(exp⊠I)

)
,

(up to a cohomological shift).

One can describe the cone of (7.9) more conceptually, by combining the results of [Chen] and [Lin].
Namely, it has a canonical filtration indexed by the poset of proper parabolics with the associated
graded corresponding to a given P being

EisenhP ◦ CTenh
P (PoincVac

! ),

where we refer the reader to [Chen] for the “enhanced” notation.

Remark 8.2.8. The object

(′fP )! ◦ (′qP )∗ ◦ (iλ/T )∗ ◦ (iJ/T )∗ ◦ (j/T )∗ ◦ (πZG)! ◦ j! ◦ (χI)∗(exp⊠I) ∈ Shv(BunM )

is closely related to (and can be algorithmically expressed via) the object

(′fP )! ◦ (′qP )∗ ◦ (iλ/T )! ◦ (iJ/T )! ◦ (j/T )∗ ◦ (πZG)! ◦ j! ◦ (χI)∗(exp⊠I) ∈ Shv(BunM ).

The computation of the latter objects is the main goal of the paper [AG2]. Namely, it says that this
object identifies with

CT∗(Poinc
Vac
! ),

which in turn be calculated using Theorem 7.4.6.

8.3. Proof of Proposition 8.1.9.

8.3.1. The proof will fit into the following general paradigm:

Let Y be a stack acted on by a vector group V . Consider the corresponding category

Whit(V ∗ × Y) ⊂ Shv(V ∗ × Y).

Namely, this is the full subcategory consisting of objects F ∈ Whit(V ∗ × Y), equipped with an
isomorphism

(id× act)∗(F) ≃ (p∗1,2 ◦ ev∗(exp))
∗
⊗ p∗1,3(F)

in Shv(V ∗ × V × Y) that restricts to the identity map24 on V ∗ × {0} × Y, where

• act denotes the action map V × Y→ Y;
• ev denotes the evaluation map V ∗ × V → Ga.

Note that the functor

Shv(Y)
act∗→ Shv(V × Y)

FourY−→ Shv(V ∗ × Y)

gives rise to an equivalence

Shv(Y)
∼→Whit(V ∗ × Y).

24Since V is unipotent as a group, the full equivariance structure is actually a condition, which is equivalent to the
simply-minded one above.
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8.3.2. Let f denote the map V ∗ × Y→ Y. We claim:

Proposition 8.3.3. The natural transformation f! → f∗ becomes an isomorphism when evaluated an
objects of Whit(V ∗ × Y).

Proof. It enough to prove the isomorphism after the (smooth) pullback by means of the map

V × Y
act→ Y.

This reduces us to the case when Y has the form V × Z with V acting on the first factor.

In this case, the equivalence

Shv(V × Z)→Whit(V ∗ × V × Z)

is given by

F 7→ p∗1,3(FourZ(F))
∗
⊗ p∗1,2(mult∗(exp)).

The operations

G ∈ Shv(V ∗ × Z)⇝ f!
(
p∗1,3(G)

∗
⊗ p∗1,2(mult∗(exp)

)
and f∗

(
p∗1,3(G)

∗
⊗ p∗1,2(mult∗(exp)

)
are the !- and *- versions of the functor

FourZ : Shv(V ∗ × Z)→ Shv(V × Z).

Now, it is well-know that the natural transformation

Four!,Z → Four∗,Z

is an isomorphism.
□

8.3.4. We apply the above paradigm as follows. Cover BunN,ρ(ω) by open substacks

BunN,ρ(ω),good at x, x ∈ X,

where we require that the generalized B-reduction be non-degenerate at x. It is enough to show that
the map f!(F)→ f∗(F) restricts to an isomorphism over every

BunN,ρ(ω),good at x.

8.3.5. Consider the corresponding stack

Bun
levelx
N,ρ(ω),good at x,

see [Ga3, Sect. 4.4.2].

The stack Bun
levelx
N,ρ(ω),good at x is acted on by the group ind-scheme L(Nρ(ω))x. Let

χI
x : L(Nρ(ω))x → GI

a

denote the canonical character.

8.3.6. Let N ′ ⊂ L(Nρ(ω))x be a sufficiently large subgroup. Let

◦
N ′ := ker(χI

x|N′).

Set

Y := Bun
levelx
N,ρ(ω),good at x/

◦
N ′.

This is a stack locally of finite type, which carries an action of V := GI
a. Finally, we note that the

category Whit(V ∗ × Y) identifies with the category

Whitext(BunN,ρ(ω),good at x × (A1)I),

where we think of (A1)I as V ∗.
□[Proposition 8.1.9]
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8.4. The Kirillov model. As a preparation to the proof of Theorem 7.5.4 in the setting where the
exponential sheaf does not exist, we discuss the fomalism of Kirillov (as opposed to Whittaker) models.

8.4.1. Let Y be a stack equipped with an action of GI
a. For every subset J ⊂ I, denote by

Shv(Y)J -cl

(iJ )!=(iJ )∗
↪→ Shv(Y)

the embedding of the full subcategory Shv(Y)G
J
a .

The above functor admits a left and right adjoints, denoted (iJ)
∗ and (iJ)

!, explicitly given by Av
GJ
a

!

and Av
GJ
a
∗ , respectively.

8.4.2. Let Shv(Y)J be the quotient of Shv(Y)J -cl obtained by modding out with respect to all
Shv(Y)J′ -cl with J ′ ⊃ J . Denote by (jJ)

∗ = (jJ)
! the projection

Shv(Y)J -cl ↠ Shv(Y)J .

This projection admits left and right adjoints, denoted (jJ)! and (jJ)∗, respectively.

8.4.3. Denote

(iJ)! := (iJ)! ◦ (jJ)! and (iJ)∗ := (iJ)∗ ◦ (jJ)∗, Shv(Y)J → Shv(Y).

These functors admit right and left adjoints, given by

(iJ)
! := (jJ)

! ◦ (iJ)! and (iJ)
∗ := (jJ)

∗ ◦ (iJ)∗,

respectively.

Thus, we obtain a stratification of Shv(Y) with subquotients Shv(Y)J .

8.4.4. In particular, we have the “open stratum” corresponding to J = ∅.

Note that the essential image of (j∅)! (resp., (j∅)∗) consists of objects for which the !- (resp., *-)
averaging for any coordinate copy of Ga ⊂ GI

a vanishes.

On general categorical grounds, we have a natural transformation

(8.5) (j∅)! → (j∅)∗.

8.4.5. Let now T be a torus equipped with a surjection onto GI
m. Denote

ZG := ker(T → GI
m).

Assume that the action of GI
a on Y can be extended to an action of T ⋉GI

a.

Then the discussion in Sects. 8.4.1-8.4.3 is applicable to Shv(Y/T ). In particular, we obtain the
sub/quotient categories

Shv(Y/T )J -cl and Shv(Y/T )J ,

and the corresponding functors

(iJ/T )!, (iJ/T )∗, (iJ/T )
!, (iJ/T )

∗, etc.
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8.4.6. For the next few subsection we will assume that we are in the situation in which the exponential
sheaf exists, and we will explain the connection with the Whittaker picture.

Consider the full subcategories

Whitext(Y× (A1)I) ⊂ Shv(Y× (A1)I)

and

Whitext(Y× (A1)I)T ⊂ Shv(Y× (A1)I)T ,

cf. Sect. 8.1.5.

Consider the corresponding functors

j! : Whitext(Y× (A1 − 0)I)→Whitext(Y× (A1)I)

and

(j/T )! : Whitext(Y× (A1 − 0)I)T →Whitext(Y× (A1)I)T .

Recall now that according to Sect. 8.3.1, we have an equivalence

Whitext(Y× (A1)I) ≃ Shv(Y),

explicitly given by !- (equivalently, *) direct image along the projection Y× (A1)I → Y.

This induces an equivalence

(8.6) Whitext(Y× (A1)I)T ≃ Shv(Y/T ).

The following is an elementary verification:

Lemma 8.4.7. The equivalence (8.6) fits onto the commutative diagram

Whitext(Y× (A1 − 0)I)T
(j/T )!−−−−−→ Whitext(Y× (A1)I)T

∼
y y∼

Shv(Y/T )∅
(j∅/T )!−−−−−→ Shv(Y/T ).

8.4.8. Note that using the element (1, ..., 1) ∈ (A1)I , we can identify

Shv(Y× (A1 − 0)I)T ) ≃ Shv(Y/ZG)

Under this identification, the subcategory

Whitext(Y× (A1 − 0)I)T ⊂ Shv(Y× (A1 − 0)I)T )

corresponds to

Whit(Y/ZG) ⊂ Shv(Y/ZG).

We claim:

Lemma 8.4.9. The equivalence

Whit(Y/ZG) ≃Whitext(Y× (A1 − 0)I)T ≃ Shv(Y/T )∅

is given by the composition

Whit(Y/ZG) ↪→ Shv(Y/ZG)
!−pushforward−→ Shv(Y/T ),

whose image lands in Shv(Y/T )∅ ⊂ Shv(Y/T ).
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8.4.10. We now return to the situation when the exponential sheaf does not necessarily exist. We let
Y = GI

a, equipped with a natural action of T ⋉GI
a.

Note that due to monodromicity, the essential image of the embedding

Shv(GI
a/T )∅

(j∅)!
↪→ Shv(GI

a/T )

consists of objects whose !-restrictions to

GJ
a ⊂ GI

a, J ̸= I

are 0. I.e., these are objects that are *-extended from (Ga − 0)I
ȷ
↪→ GI

a.

Similarly, the essential image of the embedding

Shv(GI
a/T )∅

(j∅)∗
↪→ Shv(GI

a/T )

consists of objects whose *-restrictions to

GJ
a ⊂ GI

a, J ̸= I

are 0. I.e., these are objects that are !-extended from (Ga − 0)I
ȷ
↪→ GI

a.

We obtain that the category Shv(GI
a/T )∅ identifies with

Shv((Ga − 0)I/T ) ≃ Shv(pt /ZG)

in two different ways25.

In what follows we will use the identification

(8.7) Shv(GI
a/T )∅

(j∅)!
↪→ Shv(GI

a/T )
(ȷ/T )∗→ Shv((Ga − 0)I/T ) ≃ Shv(pt /ZG).

8.4.11. Denote

exp⊠I
∅ /T := RZG [−r] ∈ Shv(pt /ZG)

(8.7)
≃ Shv(GI

a/T )∅,

where:

• RZG ∈ Shv(pt /ZG) is the !-direct image of e ∈ Vect = Shv(pt) along pt→ pt /ZG;

• r = |I| is the semi-simple rank of G.

In terms of the above identifications, we have

exp⊠I
! /T = (j∅)!(exp

⊠I
∅ /T ),

Set

exp⊠I
∗ /T := (j∅)∗(exp

⊠I
∅ /T ).

Thus, explicitly,

exp⊠I
! /T ≃ (ȷ/T )∗(RZG)[−r]

and

exp⊠I
∗ /T ≃ (ȷ/T )!(RZG)[−r].

Note that the natural transformation (8.5) gives rise to a map

(8.8) exp⊠I
! /T → exp⊠I

∗ /T.

In other words, this is a map

(8.9) (ȷ/T )∗(RZG)[−r]→ (ȷ/T )!(RZG)[−r],

note the direction of the arrow!

25They differ by a cohomological shift.
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8.4.12. Examples. Let us analyze the behavior of the map (8.9) explicitly.

. We consider the pullback of the map (8.9) to GI
a itself. Thus, we are dealing with the map

(8.10) ȷ∗(π!(eT ))→ ȷ!(π!(eT )),

where π : T → GI
m.

Assume first that T → GI
m is an isomorphism. Then both sides of (8.10), shifted cohomologically

by [r], are perverse, and the cosocle (resp., socle) of ȷ∗(eGI
m
)[r] (resp., of ȷ!(eGI

m
)[r]) is the δ-function

at 0, i.e., ept.

With these identifications, the map (8.9) is

ȷ∗(eGI
m
)[r]→ ept → ȷ∗(eGI

m
)[r].

In the general case, both sides in (8.10) have additional direct factors, given by Kummer sheaves cor-
responding to non-zero characters of (the finite group) ZG. The map (8.10) is the natural isomorphism
on these factors.

8.5. The case when there is no exponential sheaf. In this subsection we will treat the case of
Theorem 7.5.4 when we work either over a field of characteristic 0 or in mixed characteristic.

8.5.1. We adapt the formalism of Sect. 8.4 to BunN,ρ(ωX ), using the method of Sects. 8.3.4-8.3.6.

Thus, we obtain a stratification of the category Shv(BunN,ρ(ωX )) (resp., Shv(BunN,ρ(ωX )/T )) by

sub/quotient categories Shv(BunN,ρ(ωX ))J (resp., Shv(BunN,ρ(ωX )/T )J), J ⊂ I, and similarly for
BunN,ρ(ωX )

8.5.2. Consider the object

expχI ,∅ /T := (χI/T )∗(exp⊠I
∅ /T ) ∈ Shv(BunN,ρ(ωX ) /T )∅.

First, we note:

Lemma 8.5.3. For J ̸= 0, the projection

Shv(BunN,ρ(ωX ))
(j∅)
∗=(j∅)

!

↠ Shv(BunN,ρ(ωX ))∅

annihilates objects supported on BunN,ρ(ωX ) − BunN,ρ(ωX ).

Hence, we obtain that expχI ,∅ /T uniquely extends to an object of Shv(BunN,ρ(ωX )/T )∅; we denote
it by

expχI ,∅/T.

8.5.4. Unwinding the constructions, we obtain that the objects PoincVac
! and PoincVac

∗ are

(p/T )! ◦ (j∅)!(expχI ,∅/T ) and (p/T )∗ ◦ (j∅)∗(expχI ,∅/T ),

respectively, where (p/T )! ≃ (p/T )∗, since the map p is proper.

Moreover, the map (7.9) is induced by the natural transformation (8.5).

Hence, in order to prove Theorem 7.5.4, it suffices to show that for J ̸= ∅, the essential image of the
functor

(8.11) Shv(BunN,ρ(ωX )/T )J -cl
(iJ )!=(iJ )∗−→ Shv(BunN,ρ(ωX )/T )

(p/T )!−→ Shv(BunG)

lies in the essential image of the functor

Shv(BunM )
Eis!→ Shv(BunG),

where P ↠M are the standard Levi and parabolic corresponding to J .

This is done by a manipulation similar to the one used in the proof of Proposition 8.1.8. We elaborate
on this below.
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8.5.5. We stratify BunN,ρ(ωX ) by

(BunN,ρ(ωX ))λ
iλ
↪→ BunN,ρ(ωX ),

and consider the corresponding categories

Shv((BunN,ρ(ωX ))λ/T )J -cl
(iJ )!=(iJ )∗−→ Shv((BunN,ρ(ωX ))λ/T ).

We will show that the composition

(8.12) Shv((BunN,ρ(ωX ))λ/T )J -cl

(iλ)!
↪→ Shv(BunN,ρ(ωX )/T )J -cl

(iJ )!=(iJ )∗−→

→ Shv(BunN,ρ(ωX )/T )
(p/T )!−→ Shv(BunG)

factors as

Shv((BunN,ρ(ωX ))λ/T )J -cl → Shv(BunM )
Eis!→ Shv(BunG),

where P is the standard parabolic corresponding to J ⊂ I.

This follows from the Cartesian diagram

(BunN,ρ(ωX ))λ/T

∼
y

(BunB ×
BunT

X(λ))/T
′qP−−−−−→ (BunB(M) ×

BunT

X(λ))/Ty y
BunP

qP−−−−−→ BunM

pP

y
BunG,

using the following observation:

Lemma 8.5.6. The functor of *-pullback along ′qP gives rise to an equivalence

Shv((BunB(M) ×
BunT

X(λ))/T )→ Shv((BunN,ρ(ωX ))λ/T )J -cl.

□[Theorem 7.5.4]

9. Langlands functor and Eisenstein series

The goal of this section is to prove Theorem 1.4.6.

Remark 9.0.1. The proof that we will give applies in any sheaf-theoretic context (e.g., de Rham and
Betti). We note, however, that the construction of the isomorphism of functors stated in Theorem 1.4.6
is a priori different from that in [GLC3, Theorem 14.2.2].

The reason that we give a (different) proof here is that some ingredients of the proof in [GLC3]
(specifically, the semi-infinite geometric Satake) have only been developed in the de Rham context.

It is a good (but potentially quite involved) exercise to show that the two isomorphisms actually
agree.

9.1. Reducing to a statement about Lrestr
G,coarse. This step is parallel to [GLC3, Sect. 14.2.3].

9.1.1. Denote

Eis−,spec
coarse := Υ∨LSrestr

Ǧ
◦ Eis−,spec

coarse ◦ ΞLSrestr
M̌

, QCoh(LSrestr
M̌ )→ QCoh(LSrestr

Ǧ ).

In other words,
Eis−,spec

coarse = (p−,spec)∗ ◦ (q−,spec)∗;

note that map p−,spec is schematic, so the functor (p−,spec)∗ is well-behaved.
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9.1.2. We claim that in order to construct the datum of commutativity for the diagram (1.6), it is
enough to do so for the diagram

(9.1)

ShvNilp(BunM )
Lrestr
M,coarse−−−−−−→ QCoh(LSrestr

M̌ )

Eis−
!,ρP (ωX )

[δ
(N
−
P

)ρP (ωX )
]
y yEis−,spec

coarse

ShvNilp(BunG) −−−−−−→
Lrestr
G,coarse

QCoh(LSrestr
Ǧ ).

Indeed, to prove the commutativity of (1.6), it is enough to show that the two circuits are isomorphic
when evaluated on compact objects of ShvNilp(BunG).

Note that diagram (9.1) is obtained from diagram (1.6) by composing both circuits with

Υ∨LSrestr
Ǧ

: IndCohNilp(LS
restr
Ǧ )→ QCoh(LSrestr

Ǧ ).

Since the functor Υ∨LSrestr
Ǧ

is fully faithful on the eventually coconnective subcategory, it suffices to

show that both circuits in (1.6) send compact objects in ShvNilp(BunG) to eventually coconnective
objects in IndCohNilp(LS

restr
Ǧ ).

9.1.3. We first show this for the anti-clockwise circuit.

The functor Eis−! preserves compactness, and hence so does its translated version Eis−!,ρP (ωX ). Hence,

the required assertion follows from Theorem 1.1.10.

9.1.4. We now consider the clockwise circuit. The top horizontal arrow sends compact objects to
eventually coconnective objects again by Theorem 1.1.10 (applied to M).

Finally, the functor Eis−,spec
coarse has a bounded cohomological amplitude on the left, since the morphism

q−,spec is quasi-smooth.

9.2. Method of proof. The proof will be a geometric counterpart of the computation of Whittaker
coefficients of Eisenstein series, coupled with (the parabolic version of) the theory developed in [BG2]
and [FH].

9.2.1. Recall that the functor Eis−! extends to a QCoh(LSrestr
Ǧ )-linear functor

(9.2) QCoh(LSrestr
P̌− ) ⊗

QCoh(LSrestr
M̌

)
ShvNilp(BunM )→ Shv(BunG),

see the proof of Proposition 1.4.2. We will denote the functor in (9.2) by Eis−,part.enh
! .

We will denote by Eis−,part.enh
!,ρP (ωX ) the precomposition of Eis−,part.enh

! with the corresponding translation

functor (this is well-defined as the action of QCoh(LSrestr
M̌ ) on ShvNilp(BunM ) commutes with central

translations).

Remark 9.2.2. The functor Eis−,part.enh
!,ρP (ωX ) corresponds under the Langlands functor to the functor

Eis−,spec,part.enh studied in [GLC3, Sect. 12.6-7].

9.2.3. In order to construct the commutativity datum for (9.1), it suffices to do so for the diagram

(9.3)

QCoh(LSrestr
P̌− ) ⊗

QCoh(LSrestr
M̌

)
ShvNilp(BunM )

Id⊗Lrestr
M,coarse−−−−−−−−−→ QCoh(LSrestr

P̌− )

Eis
−,part.enh
!,ρP (ωX )

[δ
(N
−
P

)ρP (ωX )
]

y y(q−,spec)∗

ShvNilp(BunG) −−−−−−→
Lrestr
G,coarse

QCoh(LSrestr
Ǧ ).

Since both circuits in (9.3) are QCoh(LSrestr
Ǧ )-linear, in order to construct the commutativity datum

for (9.3), it is enough to do so for its composition with the functor Γ!(LS
restr
Ǧ ,−).
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Thus, we need to construct the datum of commutativity for the diagram

(9.4)

QCoh(LSrestr
P̌− ) ⊗

QCoh(LSrestr
M̌

)
ShvNilp(BunM )

Id⊗Lrestr
M,coarse−−−−−−−−−→ QCoh(LSrestr

P̌− )

Eis
−,part.enh
!,ρP (ωX )

[δ
(N
−
P

)ρP (ωX )
]

y yΓ!(LSrestr
P̌−

,−)

ShvNilp(BunG) −−−−−→
coeffVac

G

Vect .

9.2.4. Denote

Ωglob := q−,spec
∗ (OLSrestr

P̌−
) ∈ ComAlg(QCoh(LSrestr

M̌ )).

The morphism q−,spec is “as good as affine” (see [GLC2, Sect. 12.7.5] for what this means). Hence,
we can identify

QCoh(LSrestr
P̌− ) ⊗

QCoh(LSrestr
M̌

)
ShvNilp(BunM ) ≃ Ωglob-mod(ShvNilp(BunM )).

The datum of the functor Eis−,part.enh
! can be interpreted as the action of Ωglob, viewed as a monad

on ShvNilp(BunM ), on the functor Eis−! .

Thus, the datum of commutativity of (9.4) can be stated as an isomorphism of functors

(9.5) coeffVac
G ◦Eis−!,ρP (ωX )[δ(N−

P
)ρP (ωX )

] ≃ coeffVac
M ◦(Ωglob ⋆−)

as functors

ShvNilp(BunM )→ Vect,

acted on by the monad Ωglob. In the above formula, (−) ⋆ (−) denotes the action of QCoh(LSrestr
M̌ ) on

ShvNilp(BunM ).

In what follows we will construct an isomorphism (9.5); its compatibility with the action of Ωglob

would follow by unwinding the construction of [BG2] and [FH]26, see Remark 9.3.13.

9.2.5. Recall the category Rep(M̌)Ran, which acts on Shv(BunM ). Its action of ShvNilp(BunM ) factors
through the localization functor

Locspec,restr
M̌

: Rep(M̌)Ran → QCoh(LSrestr
M̌ ),

see [AGKRRV1, Sect. 12.7.1].

Let Ωloc ∈ Rep(M̌) be the commutative algebra

C·Chev(ň
−
P ).

We attach to it the commutative factorization algebra

Fact(Ωloc) ∈ Rep(M̌)Ran,

which we view as a (commutative) algebra object with respect to the (symmetric) monoidal structure
on Rep(M̌)Ran, see [GLC2, Sect. B.10.4].

By [GLC3, Sect. 12.3.5], we have

Ωglob ≃ Locspec,restr
Ǧ

(Fact(Ωloc)),

as commutative algebra objects in QCoh(LSrestr
M̌ ).

26More precisely, this follows by combining the Koszul duality statement in the proof of Corollary 6.4.1.2 with the
proof of Proposition 4.5.4.1 in [FH].
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9.2.6. We can view Fact(Ωloc) as a monad acting on Shv(BunM ). We will prove the following gener-
alization of (9.5):

Theorem 9.2.7. There exists a canonical isomorphism

coeffVac
G ◦Eis−!,ρP (ωX )[δ(N−

P
)ρP (ωX )

] ≃ coeffVac
M ◦(Fact(Ωloc) ⋆ (−))

as functors Shv(BunM ) → Vect, where (−) ⋆ (−) denotes the monoidal action of Rep(M̌)Ran on
Shv(BunG).

Remark 9.2.8. One can view formula (9.5) as a geometric counterpart of the classical computation of
the Whittaker coefficient of Eisenstein series.

The latter says that the Whittaker coefficient of Eisenstein series of an automorphic function on M
equals the Whittaker coefficient of a particular Hecke operator applied to that automorphic function.

The Hecke functor Fact(Ωloc) is the geometric counterpart of that classical Hecke functor.

Remark 9.2.9. Theorem 9.2.7 is equivalent to a (particular case of) [GLC3, Corollary 10.1.5], and its
proof is parallel to that of [GLC3, Theorem 10.1.2] in Sect. 10.3 of loc. cit.

The essential difference27, however, is that our key computational ingredient here is Proposi-
tion 9.3.12, whereas in [GLC3] it is Proposition 10.6.8 of loc. cit., which uses the local theory
developed in that paper, specifically Corollary 2.5.2 in loc. cit..

9.3. Proof of Theorem 9.2.7. We will give a proof when char(k) is positive, i.e., when the Artin-
Schreier sheaf exists; the proof in the characteristic zero case is completely parallel: one replaces the
Artin-Schreier sheaf by the procedure of [GLC1, Sect. 3.3].

9.3.1. Denote

BunN,ρ(ωX ) := BunB ×
BunT

{ρ(ωX)},

and denote by

χ : BunN,ρ(ωX ) → Ga

that map

BunN,ρ(ωX )
χI

→ GI
a

sum→ Ga.

Let p denote the projection

BunN,ρ(ωX ) → BunG .

Recall that the functor coeffVac is by defintion

(9.6) C·(BunN,ρ(ωX ), p
!(−)

!
⊗ χ!(expω)),

where expω denotes the Artin-Schreier sheaf on Ga, normalized so that it behaves multiplicatively with
respect to the !-pullback.

9.3.2. Recall that the functor Eis−! is defined by

(9.7) (p−)! ◦ (q−)∗(−)[dim. rel],

where:

• p− : BunP− → BunG;

• q− : BunP− → BunM ;

• dim. rel is the dimension of BunP− over BunM (it depends on the connected component of
BunM ).

27Alluded to in Remark 9.0.1.
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9.3.3. Let

B̃unP−
j←−−−−− BunP−

p̃−
y

BunG

denote Drinfeld’s relative compactification of BunP− along p−. Denote by q̃− the map B̃unP− →
BunM .

Note that the ULA property of the object j!(eBun
P−

) ∈ Shv(B̃unP−) with respect to q̃− (see [BG1,

Theorem 5.1.5]) implies that the natural transformation

j! ◦ (q̃−)∗(−) ≃ j!(eBun
P−

)
∗
⊗ (q̃−)∗(−)→ j!(eBun

P−
)

!
⊗ (q̃−)!(−)[2 dim(BunM )]

is an isomorphism.

Hence, we can rewrite

(9.8) Eis−! (−) ≃ (p̃−)∗

(
(q̃−)!(−)

!
⊗ j!(eBun

P−
)

)
[2 dim(BunM ) + dim. rel].

9.3.4. Consider the diagram

BunG,

BunN,ρ(ωX ) ×
BunG

B̃unP−

BunN,ρ(ωX ) B̃unP−

′ p̃−

��

′p

��

p

��
p̃−

��

By base change and projection formula, we obtain:

(9.9) coeffVac
G ◦Eis−! (−) ≃

≃ C·
(
BunN,ρ(ωX ) ×

BunG

B̃unP− ,
(
( ′p)! ◦ ((q̃−)!(−)

!
⊗ j!(eBun

P−
))
) !
⊗

(
( ′p̃−)! ◦ χ!(expω)

))
[2 dim(BunM ) + dim. rel].

9.3.5. Let

(BunN,ρ(ωX ) ×
BunG

B̃unP−)
tr ⊂ BunN,ρ(ωX ) ×

BunG

B̃unP−

be the open substack corresponding to the condition that the N -reduction and the generalized P−-
reduction of the G-bundle are transversal at the generic point of the curve:
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BunN,ρ(ωX ) ×
BunG

B̃unP−

BunN,ρ(ωX ) B̃unP−

(BunN,ρ(ωX ) ×
BunG

B̃unP−)
tr

′ p̃−

��

′p

��

_�

��

′ p̃−,tr

��

′ptr





As in [GLC3, Lemma 10.6.3], we have:

Lemma 9.3.6. The natural transformation

C·
(
BunN,ρ(ωX ) ×

BunG

B̃unP− ,
(
( ′p)! ◦ ((q̃−)!(−)

!
⊗ j!(eBun

P−
))
) !
⊗

(
( ′p̃−)! ◦ χ!(expω)

))
→

C·
(
(BunN,ρ(ωX ) ×

BunG

B̃unP−)
tr,

(
( ′ptr)! ◦ ((q̃−)!(−)

!
⊗ j!(eBun

P−
))
) !
⊗

(
( ′p̃−,tr)! ◦ χ!(expω)

))
is an isomorphism.

Hence, we obtain that the expression in (9.9) can be rewritten as

(9.10) C·
(
(BunN,ρ(ωX ) ×

BunG

B̃unP−)
tr,

(
( ′ptr)! ◦ ((q̃−)!(−)

!
⊗ j!(eBun

P−
))
) !
⊗

(
( ′p̃−,tr)! ◦ χ!(expω)

))
[2 dim(BunM ) + dim. rel].

9.3.7. Recall the (parabolic) Zastava space

Zast := (BunP ×
BunG

B̃unP−)
tr,

which is the open substack of BunP ×
BunG

B̃unP− , corresponding to the condition that the P -reduction

and the generalized P−-reduction are transversal at the generic point of the curve, see [BFGM, Sect.
2.2 and Proposition 3.2].

The stack Zast is endowed with a map

s : Zast→ Hecke(M)Ran′ ,

where:

• Ran′ is the sheafification of the Ran space in the topology of finite surjective maps;

• Hecke(M)Ran′ is the corresponding version of the Hecke stack for M ;

Remark 9.3.8. In the formulation in [BFGM], the map s rather goes to a version of Hecke(M) over the
space of colored divisors on X, which is the union of schemes of the form

X(n) := Π
i
X(ni), ni ∈ Z≥0,

where i runs over (a subset of) the Dynkin diagram of G.

There is no map from X(n) to Ran, however, there is one to Ran′; namely it comes from the map

Xn := Π
i
Xni → Ran,
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which is invariant with respect to

Σn := Π
i
Σni ,

where Σn is the symmetric group on n letters.

9.3.9. Note that the stack (BunN,ρ(ωX ) ×
BunG

B̃unP−)
tr that appears in (9.10) is canonically isomorphic

to

BunN(M),ρ(ωX ) ×
BunM

Zast,

where:

• N(M) is the maximal unipotent subgroup of the Levi M ;

• The map Zast→ BunM is the composition

Zast
s→ Hecke(M)Ran′

←
h→ BunM .

Under this identification, the map

(BunN,ρ(ωX ) ×
BunG

B̃unP−)
tr
′ptr−→ B̃unP−

q̃−→ BunM

corresponds to

BunN(M),ρ(ωX ) ×
BunM

Zast
id×s−→

→ BunN(M),ρ(ωX ) ×
BunM ,

←
h

Hecke(M)Ran′ → Hecke(M)Ran′

→
h→ BunM .

9.3.10. Let us denote by

Ωχ ∈ Shv
(
BunN(M),ρ(ωX ) ×

BunM ,
←
h

Hecke(M)Ran′

)
the object equal to the *-direct image along

(BunN,ρ(ωX ) ×
BunG

B̃unP−)
tr ≃ BunN(M),ρ(ωX ) ×

BunM

Zast
id×s−→

→ BunN(M),ρ(ωX ) ×
BunM ,

←
h

Hecke(M)Ran′

of (
( ′ptr)! ◦ j!(eBun

P−
)
) !
⊗

(
( ′p̃−,tr)! ◦ χ!(expω)

)
∈ Shv

(
(BunN,ρ(ωX ) ×

BunG

B̃unP−)
tr
)
.

Let us denote by r2 the projection

BunN(M),ρ(ωX ) ×
BunM ,

←
h

Hecke(M)Ran′ → Hecke(M)Ran′ .

Applying the projection formula, we obtain that the expression in (9.10) identifies with

(9.11) C·

BunN(M),ρ(ωX ) ×
BunM ,

←
h

Hecke(M)Ran′ , (r
!
2 ◦
→
h !(−))

!
⊗ Ωχ


[2 dim(BunM ) + dim. rel].
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9.3.11. Consider the map

(9.12) translρP (ωX ) : BunN(M),ρM (ωX ) ×
BunM ,

←
h

Hecke(M)Ran′ →

→ BunN(M),ρ(ωX ) ×
BunM ,

←
h

Hecke(M)Ran′ ,

given by (central) translation by ρP (ωX).

Let r1 denote the projection

BunN(M),ρM (ωX ) ×
BunM ,

←
h

Hecke(M)Ran′ → BunN(M),ρM (ωX ) .

Here is the key computational input in the proof of Theorem 1.4.6:

Proposition 9.3.12. The pullback of Ωχ along (9.12), viewed as an object of

Shv(BunN(M),ρM (ωX ) ×
BunM ,

←
h

Hecke(M)Ran′),

shifted cohomologically by

[2 dim(BunM ) + dim. rel+δ
(N−

P
)ρP (ωX )

],

identifies canonically with

(r!1 ◦ χ!
M (expω))

!
⊗ (SatnvM ◦Fact(Ωloc)),

where:

• χM : BunN(M),ρM (ωX ) → Ga is the counterpart of the map χ for M .

• SatnvM : Rep(M̌)→ SphM is the naive geometric Satake functor;

• By a slight abuse of notation, we denote by SatnvM ◦Fact(Ωloc)) the image of the corresponding
object under the equivalence

Shv(Hecke(M)Ran) ≃ Shv(Hecke(M)Ran′).

Remark 9.3.13. Recall that in order to deduce Theorem 1.4.6 from Theorem 9.2.7 we also need to know
that the isomorphism (9.5) is compatible with Ωglob-actions.

This compatibility follows from the corresponding property of the isomorphism of Proposition 9.3.12.

9.3.14. Let us assume Proposition 9.3.12 for a moment and finish the proof of Theorem 9.2.7.

Indeed, combining (9.11) with Proposition 9.3.12, we obtain that the functor

coeffVac
G ◦Eis−!,ρP (ωX )[δ(N−

P
)ρP (ωX )

]

is isomorphic to

C·
(
BunN(M),ρM (ωX ) ×

BunM ,
←
h

Hecke(M)Ran′ , (r
!
2 ◦
→
h !(−))

!
⊗ (r!1 ◦ χ!

M (expω))
!
⊗ (SatnvM ◦Fact(Ωloc))

)
By base change and projection formula, the letter expression identifies with

(9.13) C·
(
BunN(M),ρM (ωX ), p

!
M

(←
h∗

(→
h !(−)

!
⊗ (SatnvM ◦Fact(Ωloc))

)) !
⊗ χ!

M (expω)

)
,

where

pM : BunN(M),ρM (ωX ) → BunM .

We have, by definition:

←
h∗

(
→
h !(−)

!
⊗ (SatnvM ◦Fact(Ω))

)
≃ Fact(Ωloc) ⋆ (−),

as endofunctors of Shv(BunG).
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Thus, the expression in (9.13) identifies with

C·
(
BunN(M),ρM (ωX ), p

!
M

(
Fact(Ωloc) ⋆ (−)

) !
⊗ χ!

M (expω)

)
≃ coeffVac

M

(
Fact(Ωloc) ⋆ (−)

)
,

as required.
□[Theorem 9.2.7]

9.4. Proof of Proposition 9.3.12.

9.4.1. Note that the map χ is a sum of two maps χM and χNP , where the former is the sum over the
simple roots in the Dynkin diagram of M and the latter is the sum over the other simple roots.

Note that the composition

BunN(M),ρ(ωX ) ×
BunM

Zast ≃ BunN,ρ(ωX ) ×
BunG

B̃unP−
′ p̃−,tr

−→ BunN,ρ(ωX )
χM

→ Ga

identifies with

BunN(M),ρ(ωX ) ×
BunM

Zast
r1→ BunN(M),ρ(ωX )

χM→ Ga.

Denote by ΩχNP the object of Shv
(
BunN(M),ρ(ωX ) ×

BunM ,
←
h

Hecke(M)Ran′

)
defined in the same way

as Ωχ, but with χ replaced by χNP .

By base change Proposition 9.3.12 is equivalent to the isomorphism

(9.14) (translρP (ωX ))
!(ΩχNP )[2 dim(BunM ) + dim. rel+δ

(N−
P

)ρP (ωX )
] ≃ SatnvM ◦Fact(Ωloc)

as objects in

Shv(BunN(M),ρM (ωX ) ×
BunM ,

←
h

Hecke(M)Ran′).

9.4.2. Let
◦

Zast
jZast
↪→ Zast

be the open Zastava, i.e., the corresponding open

(BunP ×
BunG

BunP−)
tr ⊂ BunP ×

BunG

BunP− .

By a slight abuse of notation, let us denote by ′ptr the map Zast→ B̃unP− and by ′
◦
ptr the map

◦
Zast→ BunP− .

Since the stacks below involved are smooth, we have

( ′
◦
ptr)!(eBun

P−
) ≃ e ◦

Zast
[2(dim(

◦
Zast)− dim(BunP−))].

From here we obtain a map

(9.15) (jZast)!(e ◦
Zast

)[2(dim(
◦

Zast)− dim(BunP−))]→ ( ′ptr)! ◦ j!(eBun
P−

).

The next assertion is [Lin, Lemma 4.1.10]:

Lemma 9.4.3. The map (9.15) is an isomorphism.
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9.4.4. From Lemma 9.4.3, we obtain that the object

ΩχNP [2 dim(BunM ) + dim. rel+δ
(N−

P
)ρP (ωX )

]

is isomorphic to

(9.16) (id×s)∗
((

r!2 ◦ (jZast)!(e ◦
Zast

)
) !
⊗

(
( p̃−,tr)! ◦ (χNP )!(expω)

))
[dim(

◦
Zast)].

The required isomorphism between the pullback of (9.16) along translρP (ωX ) and the object

SatnvM ◦Fact(Ωloc) follows from [Ra1, Sect. 4.6.1] (for P = B) and [FH, Theoren 1.4.3.1] (for an
arbitrary parabolic).
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