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Abstract

In this note, following Muić–Savin [MS08], we compute the center of Kostant alge-
bra, introduced in [Kos75] as strongly commuting algebra. We explain how it encodes
information on tensor products between a finite-dimensional and a Verma module, and
about the structure of principal series representations via the work of Bernstein–Gelfand
[BG80]. We also discuss conjectured relationships to Langlands duality.

Our main motivation is to bridge the geometry of the Hitchin integrable system [Hit87]
arising in mathematical physics to the Langlands program in number theory. Ngô’s proof of
the fundamental lemma [Ngô10], following Laumon and Ngô’s [LN08] proof in the unitary
case, gave a spectacular example of such connections, but there are hints already in [Lau88].

In [HT03] we observed that the Hitchin systems for SLn and Langlands dual PGLn satisfy
the prescription of Strominger–Yau–Zaslow [SYZ96] for mirror symmetry. As a test of this
observation, we formulated the topological mirror symmetry conjecture and signalled the
hope to relate to the geometric Langlands correspondence of Drinfeld and Laumon [Lau87].

The topological mirror symmetry conjecture was first settled in [GWZ20b] using p-adic
integration techniques and then by [MS21] using Ngô’s geometric techniques from [Ngô10]
as suggested by [Hau13]. In turn, [GWZ20a] used their p-adic integration technique to re-
prove Ngô’s geometric stabilisation result from [Ngô10], reversing the logic proposed in
[Hau13].

As we will discuss it in some more detail in Section 4, the motivation for this paper comes
from [HH22], where very stable Higgs bundles, generalising Drinfeld and Laumon’s very
stable bundles in [Lau88], were studied using elementary Hecke transformations. It is ex-
plained in [Hau23] how these can be understood using minuscule multiplicity algebras, and
in turn [Hau24a] introduced big algebras to generalise these ideas to general Hecke trans-
formations. Here we will show that the medium algebras of [Hau24a], which are important
subalgebras of the big algebras, naturally lead to represention theory relevant to the local
Langlands program at the complex place. In future work we will explore this representation
theory from the perspective of big algebras.

One can consider our approach somewhat orthogonal to Ngô’s, in that we are studying
the geometry of Lagrangian multi-sections of the Hitchin fibration, while Ngô and Laumon
were studying the Hitchin fibers.
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1 Kostant’s strongly commuting algebras

For a semisimple complex Lie algebra g with Cartan subalgebra h ⊂ g, universal enveloping
algebra U(g) and finite-dimensional irreducible representation πµ : U(g) → End(V µ) of
highest weight µ ∈ Λ+ ⊂ Λ ⊂ h∗ dominant, integral weight, Kostant introduced [Kos75,
(4.6.2)] the strongly commuting algebra

Rµ(g) := (U(g)⊗ End(V µ))g (1.1)

as an associative algebra over the center Z(g) := U(g)g = Z(U(g)) ⊂ U(g). If

δ : U(g)→ U(g)⊗ End(V µ), (1.2)

defined by the condition δ(x) = x⊗ 1 + 1⊗ πµ(x) for x ∈ g, denotes the diagonal map then
the g-invariant subring Rµ(g) of U(g) ⊗ End(V µ) can be thought to be the commutant of
δ(U(g)):

Rµ(g) = CU(g)⊗End(V µ)(δ(U(g))) ⊂ U(g)⊗ End(V µ).

By [Hig11, Proposition 2.13] (see Lemma 1.4 below), Kostant algebras coincide, in the
complex Lie algebra case, with the Hecke algebras appearing in [MS08] and [Hig11], going
back at least to [Lep73] and [KV95]; but in a way as far as [HC54] and [PRRV67] in our case
of complex Lie algebra g. Therefore, their representation theory plays an important role in
classifying admissible irreducible representations of a connected complex Lie group G, with
Lie algebra g, considered as a real Lie group. This classification is part of the local Langlands
program at the complex place. We can also mention [Jos14], where the Kostant algebras were
considered by the name relative Yangians, and their representation theory was studied from
the perspective of the Bernstein-Gelfand-Gelfand category O [Hum08]. Kostant algebras
were also studied in the recent [SZ24].

Rozhkovskaya [Roz03, Theorem 4.1] proved that Rµ(g) is commutative if and only if
V µ is weight multiplicity free, i.e., if dim(V µ

λ ) ≤ 1 for any weight λ ∈ Λ. Kostant [Kos75,
Remark 4.9] observed that δ(Z(g)) ⊂ Z(Rµ(g)) is in the center ofRµ(g). We will show below
in Theorem 1.2 that they generate the center Z(Rµ(g)) over Z(g).

We denote the Z(g)-subalgebra

Zµ(g) := ⟨δ(x)x∈Z(g)⟩Z(g) ⊂ Rµ(g),
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given by generators, the filtered medium algebra. Thus Zµ(g) is generated by Z(g) ⊗ δ(Z(g)).
Consequently, we can compute Spec(Zµ(g)) by embedding it in

Spec(Z(g))× Spec(Z(g)) ∼= h∗//W • × h∗//W •, (1.3)

where the Weyl group W acts on h∗ via the •-action, i.e. w • v = w(v + ρ) − ρ, where v ∈ h∗,
w ∈ W and ρ ∈ Λ ⊂ h∗ is the sum of fundamental weights, or equivalently the half-sum of
positive roots. In (1.3) we used the Harish-Chandra isomorphism Z(g) ∼= U(h)W • ∼= S(h)W •,
where S(h) denotes the symmetric algebra of h.

First, we consider the fiber Rµχ(g) := Rµ(g)/(ker(χ)) for a character χ : Z(g) → C ∈
Spec(Z(g)), where (ker(χ))◁Rµ(g) is the left ideal generated by ker(χ). LetUχ := U(g)/(ker(χ))

denote the maximal quotient of U(g). Then we have the following

Lemma 1.1.

Rµχ(g) = Rµ(g)/(ker(χ)) = (Uχ ⊗ End(V µ))g. (1.4)

Proof. The second equation above follows, because the natural mapRµ(g)→ (Uχ⊗End(V µ))g

has kernel (ker(χ)), thus we have the embedding

Rµ(g)/(ker(χ)) ↪→ (Uχ ⊗ End(V µ))g. (1.5)

Additionally, we determine their dimensions

dim(Rµ(g)/(ker(χ))) =
∑
λ∈Λ

(mµ
λ)

2 = dim(End(V µ)h) = dim((Uχ ⊗ End(V µ))g). (1.6)

The first equation follows because by [Roz03, Proposition 2.1] as Z(g)-modules we have

Rµ(g) ∼=Z(g)

∑
λ∈Λ

Matmµ
λ
(Z(g)),

where mµ
λ := dim(V µ

λ ) is the dimension of the weight spaces in the decomposition as an
h-module

V µ ∼=h

⊕
λ∈Λ

V µ
λ .

The second equation of (1.6) is straightforward. The third follows from

U(g) ∼=Z(g) Z(g)⊗H(g) (1.7)

being [Kos63, Theorem 0.13] a free Z(g)-module. While as a g-module under the adjoint
action (1.7) matches U(g) with the trivial g-action on Z(g) and

H(g) ∼=g

⊕
ν∈Λ+

(V ν)m
ν
0 .

Now (1.4) follows from (1.5) and (1.6).
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Let λ ∈ h∗ be such that the infinitesimal character

χλ : Z(g)→ C (1.8)

of the Verma module Mλ, of highest weight λ, satisfies χλ = χ. By the Duflo-Joseph theorem
[Eti24, Corollary 18.8], cf. [Jan83, 6.2.(8)], we have Uχλ

∼= Homfin(Mλ,Mλ), where Homfin is
the g-finite part of Hom (cf. [Eti24, 18.1]), i.e. those homomorphisms which are contained in
finite-dimensional g-subrepresentations. Then we get

Rµχ(g) = (Uχ ⊗ End(V µ))g = (Homfin(Mλ,Mλ)⊗ End(V µ))g

= (Endfin(Mλ ⊗ V µ))g = (End(Mλ ⊗ V µ))g = EndO(Mλ ⊗ V µ) (1.9)

as the endomorphism algebra of Mλ ⊗ V µ in the BGG category O [Hum08]. The fourth
equation follows because the g-invariant part is automatically in the g-finite part.

Thus, the map

g : Z(g)⊗ Z(g)→ Zµ(g) (1.10)

given by g(z1, z2) = z1δ(z2) ∈ Z(Rµ(g)) in the presentation (1.9) gives the g-linear map
g(z1, z2) :Mλ ⊗ V µ →Mλ ⊗ V µ diagonally given in the decomposition as an h-module:

Mλ ⊗ V µ ∼=
⊕
ξ∈h∗

(Mλ ⊗ V µ)(ξ)

by

g(z1, z2)|(V µ⊗Mλ)(ξ) = χλ(z1)χξ(z2)Id(V µ⊗Mλ)(ξ). (1.11)

If Sµ := {µi} ⊂ Λ denotes the set of weights in V µ, then the set of infinitesimal characters
appearing in Mλ⊗ V µ is {χλ+µi} by [Hum08, Theorem 3.6]. Thus the spectrum of the image
of δ(Z(g)) inRµχ is supported at {[λ+ µi]•} ⊂ h∗//W • = Spec(Z(g)), where

[λ+ µi]• :=W •(λ+ µi) ∈ h∗//W •.

Using this and arguments of [MS08] we will prove the following.

Theorem 1.2. 1. The filtered medium algebra Zµ(g) = Z(Rµ(g)) coincides with the center of
the Kostant algebra.

2. Spec(Zµ(g)) ⊂ Spec(Z(g))× Spec(Z(g)) is the reduced subscheme with

Spec(Zµ(g))(C) = {([λ]•, [λ+ µi]•) | λ ∈ h∗, µi ∈ Sµ} ⊂ Spec(Z(g))× Spec(Z(g)).

In other words Zµ(g) ∼= Z(g) ⊗ Z(g)/Iµ where Q ∈ Iµ ◁ Z(g) ⊗ Z(g) ⊂ C[h∗ ⊕ h∗] if and
only if Q(λ, λ+ µi) = 0 for all λ ∈ h∗ and µi ∈ Sµ.

Remark 1.3. Note that the ideal Iµ and ring Z(g) ⊗ Z(g)/Iµ appear in [BG80, Theorem 2.5]
without the connection to the center of Kostant algebraRµ(g).
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Proof. Here we recall the ingredients of the proof, in our case of a complex Lie algebra g, from
[MS08]. They [MS08] prove the analogous results more generally for quasi-split real groups.
We will use results of [LM73] and [Lep73] as discussed in [Dix96] and [Wal88], which were
developed in the general real semisimple Lie group case, and applied in the case of complex
semisimple Lie groups in [Duf70] and [Hig11].

Following [Duf70] we let gC := g⊗C = g1⊕ g2 be the complexification of the Lie algebra
g, where g1 ∼= g2 ∼= g. Let

gC = k⊕ a⊕ n (1.12)

be the Iwasawa decomposition. Here k ∼= g is the twisted diagonal copy of

k = (x,−tx)x∈g ⊂ g1 ⊕ g2,

a = (x, x)x∈h ⊂ g1 ⊕ g2,

is a maximal commutative subalgebra in the subspace

p = a+ n = (x, tx)x∈g < g1 ⊕ g2.

We also denote by
m = (x,−x)x∈h

the Cartan subalgebra of the twisted diagonal k. We denoted x 7→ tx a Chevalley anti-
involution of g, which is defined using a Chevalley basis {eβ, fβ, hi ∈ h : β ∈ ∆+, 1 ≤ i ≤ r}
by teβ = fβ and thi = hi with respect to a choice of h ⊂ g Cartan subalgebra and set of
positive roots.

In particular, a ∼= h ∼= m canonically. We can thus write h∗C
∼= h∗ ⊕ h∗ ∼= a∗ ⊕ m∗ in two

different ways. We will either use coordinates

(ξ, ψ) ∈ h∗ ⊕ h∗

or
ν ⊕ λ ∈ a∗ ⊕m∗.

Thus,

(ξ, ψ) = ν ⊕ λ (1.13)

means that ξ + ψ = ν and ξ − ψ = λ, and ξ = (ν + λ)/2 and ψ = (ν − λ)/2.
Then the decomposition (1.12) induces the canonical mapping [Dix96, 9.2.2]

U(gC)→ U(a)⊗ U(k),

which when restricted to the commutantU(g1⊕g2)k of the twisted diagonalU(k) ⊂ U(g1⊕g2)
induces [Dix96, 9.2.3.iii] an anti-homomorhpism:

p : U(g1 ⊕ g2)
k → U(a)⊗ U(k)m. (1.14)
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When followed by our finite-dimensional irreducible representation πµ : U(k) → End(V µ)

then [Lep73, Theorem 1.3] identifies the kernel of

pµ := πµ ◦ p : U(g1 ⊕ g2)
k → U(a)⊗ End(V µ)m

as

ker(pµ) = U(gC)
k ∩ U(gC)Iµ, (1.15)

where Iµ = ker(πµ) ◁ U(k) ⊂ U(gC) is the kernel of the representation πµ : U(k)→ End(V µ).
Thus we can describe the Hecke algebra of [MS08, §3] in our special complex Lie algebra
case, following [Hig11], in the following

Lemma 1.4.

U(gC)
k/ ker(pµ) = U(gC)

k/(U(gC)
k ∩ U(gC)Iµ)

= (U(gC)⊗U(k) End(V µ))k

= (U(g1)⊗ (End(V µ))op)g

= Rµ∗(g1). (1.16)

Proof. In the first equation we used (1.15). For the second first note the product

(a1 ⊗ b1) · (a2 ⊗ b2) = a1a2 ⊗ b2b1 (1.17)

for a1⊗b1, a2⊗b2 ∈ U(gC)⊗U(k) End(V µ) is well defined on (U(gC)⊗U(k) End(V µ))k the U(k)-
commutant part. Then because πµ : U(k) ↠ End(V µ) is surjective so is the U(gC)-module
map

π̃ : U(gC) ↠ U(gC)⊗U(k) End(V µ) (1.18)

and in turn we have the surjective ring homomorphism

π : U(gC)
k ↠ (U(gC)⊗U(k) End(V µ))k.

To compute the kernel of π we note that the kernel of π̃ is U(gC)Iµ by the following Lemma
applied to the case R = U(gC), A = U(k) and I = Iµ (cf. also [Wal88, 3.5.2.(1)]).

Lemma 1.5. Let I ◁ A ⊂ R be a left ideal in a subring of a unital ring. Then as left R-modules we
have

R/RI ∼= R⊗A A/I.

Proof. First we can define f : R/RI → R⊗A A/I by f(r +RI) := r ⊗ 1 and g : R⊗A A/I →
R/RI by g(r ⊗ (a + I)) := ra + RI . Then it is straightforward to check that f and g are
well-defined and are inverses to each other. The result follows.
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Now it follows that ker(π) = U(gC)
k ∩ U(gC)Iµ which incidently agrees with U(gC)

k ∩
U(gC)Iµ = U(gC)

k ∩ IµU(gC) by [Dix96, 9.1.10.(ii)], thus is a two-sided ideal of U(gC)
k. This

altogether implies the second equation of (1.16).
In the third equation of (1.16), we denoted

g = (x, x) ⊂ g1 ⊕ g2

the diagonal, and we used the crossed product U(gC) = U(g1) ⋊ U(k) following [Hig11,
Proposition 2.13]. The opposite algebra appears because of the natural product structure on
(U(gC)⊗U(k) End(V µ))k in (1.17). In fact, the surjection U(gC)

k ↠ Rµ∗(g) obtained this way is
[Hig11, Lemma 2.15], which is different from the coordinatewise one

1⊗ πµ∗ : U(gC)
g = (U(g1)⊗ U(g2))

g ↠ (U(g1)⊗ End(V µ∗))g.

Finally, in the fourth equation in (1.16) we used that the opposite matrix algebra End(V µ)op ∼=
End((V µ)∗) ∼= End(V µ∗), where µ∗ the highest weight of the dual representation (V µ)∗. This
completes the proof of Lemma 1.4.

Thus, by (1.15) and (1.16) we get an injective anti-homomorphism:

pµ : Rµ∗(g) ↪→ U(a)⊗ End(V µ)m (1.19)

We have End(V µ)m ∼= ⊕λEnd(V µ
λ ), where V µ

λ denotes the h-weight space λ ∈ Λ(g) of
the representation V µ. We denote dim(V µ

λ ) = mµ
λ. As U(a) ∼= S∗(a) canonically, for each

ν ∈ a∗ ∼= h∗ and λ ∈ Λ ⊂ h∗ such that mµ
λ ̸= 0 we have a representation of Rµ∗(g) on (V µ

λ )
∗

denoted

ρν,λ := pµ ⊗ Cν : Rµ∗(g)→ End((V µ
λ )

∗). (1.20)

Note that ifX is a Harish-Chandra (gC, k)-module, then the finite-dimensional Homg(V
µ, X)

is anRµ∗(g1)-module. Moreover, the map

X 7→ Homg(V
µ, X) (1.21)

establishes (see [LM73, Theorem 5.5] or a more recent discussion [Hig11, Proposition 2.10])
a bijection between the set of irreducible Harish-Chandra (gC, k)-modules X with

Homg(V
µ, X) ̸= 0

and irreducible representations ofRµ∗(g).

Proposition 1.6. For ν ∈ a∗ ∼= h∗ and λ ∈ Λ ⊂ m∗ ∼= h∗ let (ξ, ψ) = ν ⊕ λ as in (1.13). Then the
representations ρξ,ψ := ρν,λ in (1.20) satisfy the following properties. When ξ is •-dominant, that is
⟨ξ + ρ, α⟩ is not a negative integer for any α ∈ ∆+ positive root, and ψ is •-antidominant, that is

− • ψ := −ψ − 2ρ

is •-dominant, we have
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1. ρξ,ψ is irreducible.

2. For w ∈W we have ρw•ξ,w•ψ
∼= ρξ,ψ.

3. The irreducible ρξ,ψ is a subquotient of ρξ,w•ψ for any w ∈ W such that w • ψ − ψ ∈ Λr ⊂ Λ

is in the root lattice.

Proof. Note that by [Wal88, 3.5.8] the principal series Harish-Chandra (gC, k)-module (cf.
[Jan83, §6])

X(ξ, ψ) := Homfin(Mψ,M
∨
ξ ) (1.22)

corresponds to ρξ,ψ under the map (1.21). Here Mξ is the Verma module of highest weight
ξ ∈ h∗, M∨

ψ is the dual Verma module (cf. [Hum08, §3.2]) and Homfin is the k-finite part of
Hom (cf. [Eti24, 18.1]).

Now 1. follows from [Duf70, Theorem 4.4]. 2. follows from 1. and [Duf70, Lemme
5.5]. Finally, 3. (and also 1.) can be seen from the equivalence of categories in [BG80, §6],
(cf. [Jan83, §6]), which for ψ •-dominant translates the statements from X(ξ, ψ) to the corre-
sponding statements about M∨

ξ . Ultimately, it follows from [BG80, Theorem 6.7].

Now we observe that

pµ(Z(Rµ
∗
(g))) ⊂ Z(U(a)⊗ End(V µ)h) ∼= U(a)⊗

⊕
λ∈Sµ

Z(End((V µ
λ )

∗)). (1.23)

It is because ρν,λ is irreducible for a Zariski dense set of ν’s by Proposition 1.6. Thus, the
center Z(Rµ∗(g))ν ⊂ Z(Rµ

∗
ν (g)) will act with a scalar for a Zariski dense subset of ν’s in a∗.

As Z(End((V µ
λ )

∗)) ⊂ End((V µ
λ )

∗) is a closed subset we get (1.23).
Now the subset

Vµ := {(ψ + λ, ψ)|ψ ∈ h∗, λ ∈ Sµ} ⊂ h∗ × h∗

is a union of affine hyperplanes and thus is an affine subvariety. It also parametrizes the
principal series representations X(ψ + λ, ψ) such that Homg(V

µ, X(ψ + λ, ψ)) ̸= 0. In turn,
we can identify Vµ ∼= Spec(U(a) ⊗

⊕
λ∈Sµ Z(End((V µ

λ )
∗))) in the obvious way, and see that

the map pµ(z) is just the function on Vµ given by assigning to the principal seriesX(ψ+λ, ψ)

the scalar, with which the central element z ∈ Z(Rµ∗) acts on it. By Proposition 1.6.2, this
function is invariant under the diagonal W •-action. By Proposition 1.6.3, pµ(z) is invariant
under the W •-action on the second coordinate of h∗ × h∗ in the sense that it takes the same
value on (ξ, ψ) and (ξ, w • ψ) as long as both (ξ, ψ) ∈ Vµ and (ξ, w • ψ) ∈ Vµ. This means that
we can extend our function on Vµ uniquely to a W • ×W •-invariant function on

Ṽµ := (1×W •)(Vµ) = {(ψ + λ,w • ψ)|ψ ∈ h∗, λ ∈ Sµ, w ∈W} ⊂ h∗ × h∗

Thus we see that
pµ : Z(Rµ∗) ↪→ C[Ṽµ]W •×W •.

To show surjection we note that

Ṽµ//(W • ×W •) ⊂ h∗//W • × h∗//W • ∼= Spec(Z(g)⊗ Z(g)) ∼= Spec(Z(gC))
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is an affine subvariety, thus the restriction map

Z(gC) ↠ C[Ṽµ]W •×W • (1.24)

is surjective. We can conclude the proof of Theorem 1.2 by noting the restriction map (1.24)
factors through the map Z(gC) ⊂ Z(U(gC)

k)→ Z(Rµ∗(g)).
To identify the map

f : Z(gC) = Z(g1 ⊕ g2) = Z(g1)⊗ Z(g2) ↠ Zµ
∗
(g)

we can follow it through (1.16) and find that z1 ⊗ z2 ∈ Z(g1)⊗ Z(g2) maps to

f(z1 ⊗ z2) = z1δ(z2) ∈ Rµ
∗
(g1).

Indeed, we can compute the representation of ρξ,ψ corresponding to the principal series
X(ξ, ψ) of (1.22) under the correspondence of (1.21). Namely,

Homg(V
µ, X(ξ, ψ)) = Homg(V

µ,Homfin(Mψ,M
∨
ξ ))

= Homg(V
µ ⊗Mψ,M

∨
ξ )) = HomO(V

µ ⊗Mψ,M
∨
ξ )). (1.25)

Thus we can see that z1 ⊗ z2 ∈ Z(g1) ⊗ Z(g2) → Rµ
∗
(g) acts on (1.25) by pµ(z1 ⊗ z2) =

χξ(z1)χψ(z2) which agrees with the action of g(z1, z2) = z1δ(z2) on (V µ∗ ⊗Mξ)(ψ) by (1.10).

Remark 1.7. The proof above is the straightforward application of the usual strategy [Dix96,
Theorem 7.4.5] originally employed for the Harish-Chandra isomorphism: Z(g) ∼= S(h)W•.
Namely, there we proceed by considering the projection U(g) → U(h) induced by the trian-
gular decomposition g = n + h + n. Analogously, in the proof above, we had the canonical
mapping (1.14) induced from the Iwasawa decomposition (1.12). Next, one observes that the
restriction Z(g) ↪→ U(h) ∼= S(h) is an embedding, and identifies the image using the linkage
principle for Verma modules. Similarly we had the embedding (1.23), and we identified the
image by understanding the linkage for principal series representations in Proposition 1.6.

Remark 1.8. Note that if µ, λ ∈ Λ+ such that µ − λ is a non-negative linear combination of
positive roots then Sλ ⊂ Sµ thus Ṽλ ⊂ Ṽµ and so we have canonical surjections: Zµ(g) ↠
Zλ(g). We denote

Ṽ := {(ψ, ξ)|ψ − wξ ∈ Λ for some w ∈W} ⊂ h∗ × h∗

the ind-scheme Ṽ = lim−→Ṽ
µ. In light of Theorem 1.2 we have the following corollary, which

is [MS08, Theorem 2] specialised to the complex Lie algebra case.

Corollary 1.9. The center Z(gC, k) of the category of Harish-Chandra (gC, k)-modules is

Z(gC, k) ∼= lim←−Z
µ(g) ∼= C[Ṽ]W •×W •.
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Remark 1.10. For aW -orbit [µi] :=Wµi ∈ Sµ/W we have an irreducible component Spec(Zµ(g))[µi]
of Spec(Zµ(g)) given by

Spec(Zµ(g))[µi](C) = {([λ]•, [λ+ µi]•) | λ ∈ h∗} (1.26)

which can be identified with h//Wµi•, which in turn can be identified with Spec(H∗
G∨(G∨/P∨

µi)).
In [HL25] this will be related to the fixed point set of the loop rotation on GrµG∨ being∐

[µi]∈Sµ/W G∨/P∨
µi motivated by Nakajima’s observation [Hau24a, Theorem 3.1] relating

Zµ(g) to the equivariant cohomology of GrµG∨ .

Corollary 1.11. The Cartan involution θ : gC → gC sending (x, y) to (−ty,−tx) induces

Φ : ([λ]•, [µ]•) 7→ ([− • µ]•, [− • λ]•) = ([−µ− 2ρ]•, [−λ− 2ρ]•) (1.27)

on Spec(Z(g))×Spec(Z(g)), which in turn defines an involution onZµ(g) swapping the coefficients
Z(g) with the corresponding generators δ(Z(g)).

Remark 1.12. When −1 ∈ W (i.e. in types A1,B,C,D2n, G2,F4, E7 and E8) then −• ∈ W • and
so the symmetry (1.27) is just ([λ]•, [µ]•) 7→ ([µ]•, [λ]•).

Remark 1.13. We note that Φ preserves any component (1.26). Where it induces the involution

Φµi : C[h∗]Wµi
• → C[h∗]Wµi

•

f(λ) 7→ f(− • (λ+ µi))
,

which swaps the coefficients C[h∗]W • ∼= Z(g) with the generators C[h∗]W+µi• = δ(Z(g)) ⊂
C[h∗]Wµi

•, where W+µi• denotes the w ∈W action on h∗ given by λ 7→ w(λ+µi+ρ)−µi−ρ
with unique fixed point at −ρ− µi.

Remark 1.14. For a self-dual µ∗ = µ we have Sµ = −Sµ and then −• acts on Spec(Zµ(g)) by

−• : ([λ]•, [µ]•) 7→ ([− • λ]•, [− • µ]•).

It is induced by the principal anti-involution [Dix96, 2.2.18] on U(gC) extending x 7→ −x for
x ∈ gC. Thus

− • Φ : ([λ]•, [µ]•) 7→ ([λ]•, [µ]•)

also acts on Spec(Zµ(g)). Together {1,Φ,−•,− • Φ} form a Klein group action on Zµ(g).

2 Associated graded

Independently of [Kos75] Kirillov [Kir00] reintroduced the algebras Rµ(g) under the name
quantum family algebra. He also introduced their classical counterpart Cµ(g) := (S∗(g) ⊗
End(V µ))g an associated, graded S∗(g)g-algebra, which he called classical family algebra. For
shortness, we will callRµ(g) Kostant algebra and Cµ(g) Kirillov algebra.

The associated graded of the standard filtration U(g) = ∪∞p=0Up(g) satisfies U(g) ∼= S∗(g).
The standard filtration is g-invariant, thus it induces a filtration onRµ(g) which satisfies

Rµ(g) ∼= Cµ(g). (2.1)
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We recall the symmetrization map

ω : S∗(g)
∼=→ U(g) (2.2)

and the standard vector space grading U(g) = ⊕∞
p=0U

p(g) induced by ω and the natural
grading on S∗(g). The following lemma describes how the diagonal map δ in (1.2) works on
the associated graded.

Lemma 2.1. If f ∈ Sp(g) then write

δ(ω(f)) = (δq(ω(f)))pq=0 ∈
p⊕
q=0

(U q(g)⊗ End(V µ)).

Then we have

δp(ω(f)) = ω(f)⊗ 1 ∈ U(g)⊗ End(V µ), (2.3)

δp−1(ω(f)) = πµ(d(f)) ∈ S∗(g)⊗ End(V µ), (2.4)

where d(f) ∈ S∗(g) ⊗ (g∗)∗ ∼= S∗(g) ⊗ g denotes the exterior derivative of the polynomial function
f : g∗ → C.

Proof. Let {x1, . . . , xd} be a basis of g and ν ∈ Nd such that |ν| := ν1 + · · · + νd = p. Let

xν :=
x
ν1
1 ...x

νd
d

ν1!...νd!
∈ U(g) while its associated graded xν :=

x
ν1
1 ...x

νd
d

ν1!...νd!
∈ Sp(g), where we used the

notation xi := xi ∈ g to signify that it lives in S∗(g). Then we can determine

δ(xν) =
(x1 ⊗ 1 + 1⊗ πµ(x))ν1

ν1!
· · · (xd ⊗ 1 + 1⊗ πµ(xd))νd

νd!
.

We see that

δp(xν) = xν ⊗ 1. (2.5)

and that

δp−1(xν) =
∑
νi>0

xν11 . . . xνi−1
i . . . xνdd

ν1! . . . (νi − 1)! . . . νd!
⊗ πµ(xi).

Thus

δp−1(xν) =
∑
νi>0

xν11 . . . xνi−1
i . . . xνdd

ν1! . . . (νi − 1)! . . . νd!
⊗ πµ(xi) =

d∑
i=1

∂

∂xi
(xν)⊗ πµ(xi) = πµ(d(xν)). (2.6)

As {xν + Up−1(g) | |ν| = p} form a basis by [Dix96, Theorem 2.1.11] for Up(g)/Up−1(g) (2.5)
implies (2.3) and (2.6) implies (2.4). The result follows.

Denote by
Mµ(g) := ⟨{πµ(dx)}x∈S(g)G⟩S(g)G ⊂ Cµ

the graded medium algebra or medium algebra for short. Then Lemma 2.1 implies the following

11



Proposition 2.2. The associated graded of the standard filtration onRµ(g) inducesZµ(g) ∼=Mµ(g).

Remark 2.3. To an invariant polynomial C ∈ Z(g) ∼= U(h)//W •we can associate the quantum
M -operator

MC = δ(C)− C − C(µ) ∈ Zµ(g).

The natural filtration on Zµ(g) induced from the filtration on U(g) will be induced from
fil(C) = deg(C) and fil(MC) = deg(C) − 1. We see that Φ(C) = δ(C ◦ −•) and Φ(δ(C)) =

C ◦ −•. Thus Φ(MC) = (C ◦ −•)− δ(C ◦ −•)−C(µ). When C is homogeneous around −ρ of
degree k = deg(C) then C ◦ −• = (−1)kC and

Φ(MC) = (−1)k−1MC + ((−1)k−1 − 1)C(µ)

and
Φ(C) = (−1)kC + (−1)kMC + C(µ).

Thus we see that Φ on the associated graded Zµ(g) = Mµ(g) induces (−1)deg. Similarly
−• induces (−1)deg+age while − • Φ induces (−1)age on the graded medium algebraMµ(g),
where age(C) = 0 and age(MC) = 1. Thus, the Klein group symmetry of Remark 1.14
on Zµ(g) quantizes the Klein group symmetry {1, (−1)deg, (−1)age, (−1)deg+age} on Mµ(g)

when Sµ = −Sµ.

Remark 2.4. [Hig11, Theorem 6.3] showed that the representations of the Kirillov algebra
Cµ(g) are related to the representations of the Cartan motion group G ⋉ p. Using its rep-
resentation theory, which has been developed in [CD81], we expect that a similar analysis
as in the Kostant algebra case in Section 1 will give an explicit presentation for the graded
medium algebraMµ(g). We plan to return to this problem.

3 Example of g = sl2

Let g = sl2 and µ = 5ϖ1 ∈ Λ, where ϖ1 ∈ Λ is the fundamental weight. Then let C2 =

λ(λ+ 2) be the Casimir operator on a representation of highest weight λ ∈ h∗. Thus we can
identify Z(g) ∼= C[C2]. We can define

M̃1 := δ(C2) ∈ Z5ϖ1(sl2).

To understand our Theorem 1.2 in this case, we first depict in Figure 1 V5ϖ1 the lines
(λ, λ + µi) in h∗ × h∗ for µi in the set of weights S5ϖ1 = {−5,−3,−1, 1, 3, 5} of V 5ϖ1 . The
set V5ϖ1 parametrizes principal series representations X(ξ, ψ) which, as a k-module, contain
V 5ϖ1 .

The image of these lines in the quotient h∗//W • ×h∗//W • in Figure 2 will be Spec(Z5ϖ1)

by Theorem 1.2. Explicitely we get Z5ϖ1 = C[C2, M̃1]/((C
2
2 − 2C2M̃1 + M̃2

1 − 2C2− 2M̃1− 3)

(C2
2 − 2C2M̃1 + M̃2

1 − 50C2 − 50M̃1 + 525)(C2
2 − 2C2M̃1 + M̃2

1 − 18C2 − 18M̃1 + 45)). Both
this explicit form and the graph satisfy the symmetry C2 ↔ M̃1 of Corollary 1.11.

From Spec(Z5ϖ1(sl2)), using (1.9), we can read off the decomposition of Mλ ⊗ V 5ϖ1 , for
dominant λ, when Mλ = Pλ into projective indecomposables as follows. One can compare
these with the explicit formulas in [Tro12, §4].
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Figure 1: The parameter space V5ϖ1 .

Figure 2: Spec(Z5ϖ1(sl2)).

From Figure 2, Spec(Z5ϖ1(sl2)) → Spec(Z(g)) has singular fibers precisely at the disc-
rimant locus C2 = −1, 0, 3, 8, 15, which correspond to highest weights λ = −1, 0, 1, 2, 3. Thus
for other values of C2(λ) the tensor product

Mλ ⊗ V µ =
⊕
ν

Mν

will be decomposing as a direct sum of Verma modules with distinct infinitesimal characters
C2(ν) given by the values of the graph of Figure 2 at such λ.
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While at λ = −1 we have

M−1 ⊗ V 5ϖ1 = P−6 ⊕ P−4 ⊕ P−2.

The values of the graph at −1 are giving the infinitesimal characters C2(−2) = 0, C2(−4) =
9, C2(−6) = 24.

At λ = 0

M0 ⊗ V 5ϖ1 = P−5 ⊕ P−3 ⊕M−1 ⊕M5,

their infitesimal characters are 15, 3,−1, 35 matching the values at C2 = 0 of the graph in
Figure 2.

At λ = 1 we get
M1 ⊗ V 5ϖ1 = P−4 ⊕ P−2 ⊕M4 ⊕M6,

and the corresponding infinitesimal characters 8, 0, 24, 48 matching the values of the graph.
At λ = 2 we get

M2 ⊗ V 5ϖ1 = P−3 ⊕M−1 ⊕M1 ⊕M3 ⊕M5 ⊕M7.

While at λ = 3 we get

M3 ⊗ V 5ϖ1 = P−2 ⊕M0 ⊕M2 ⊕M4 ⊕M6 ⊕M8.

In both cases the infinitesimal characters appearing in the decomposition match the corre-
sponding value of the graph.

To compare with [Roz03, Proposition 5.1] we introduce

M1 = δ(C2)− C2 ⊗ 1− 1⊗ C2(5) ∈ Z5ϖ1(sl2) = M̃1 − C2 ⊗ 1− 1⊗ C2(5) ∈ Z5ϖ1(sl2).

Then rescaling M1 and C2 appropriately, Rozhkovskaya’s formula reads that the minimal
polynomial of M1 over C[C2] in Rkϖ1(sl2) is

∏k
j=0(M − bj) where bj = 4(j2 − n/2 − jn +

(n/2− j)
√
C2 + 1). In our case this gives:

Z5ϖ1(sl2) = C[C2,M1]/(M
2
1+20M1−100C2)(M

2
1+52M1−36C2+640)(M2

1+68M1−4C2+1152).

We depicted the graph in these coordinates in Figure 3.
Finally, when we take in Proposition 2.2 the associated gradedM5ϖ1(sl2) = Z5ϖ1(sl2))

of the standard filtration on Z5ϖ1(sl2), then we get

M5ϖ1(sl2) = C[c2,M1]/(M
2
1 − 100c2)(M

2
1 − 36c2)(M

2
1 − 4c2).

The graph of which is depicted in Figure 4 (cf. also [Hau24a, Fig 1]).
As explained in [Hau23] one can see this picture as a model for the SL2-Hitchin system on

a certain Lagrangian multi-section (meaning finite intersection with all fibers) of the Hitchin
map. The fibers are all smooth, except at 0 which corresponds to the nilpotent cone (cf.
[Lau88]).

Our last example in Figure 5 is the odd component of Z(sl2 × sl2, sl2) from Corollary 1.9
to see how the various centers Z(2k+1)ϖ1(sl2) fit together. The intersection points of the
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Figure 3: Spec(Z5ϖ1(sl2)).

Figure 4: Spec(M5ϖ1(sl2)).

parabolas correspond to finite-dimensional irreducible representations of sl2 × sl2, while
the other point at the resolution of the intersection corresponds to an infinite-dimensional
simple principal series representation which contains this finite-dimensional representation
as a subquotient (cf. [MS08, §12]).

Finally, the colouring from red to violet in the visible spectrum is showing the height of
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the ”minimal type” of the principal series X(ξ, ψ): the dominant weight µ ∈ Λ+ of lowest
height such that Hom(V µ, X(ξ, ψ)) ̸= 0. At the intersection points of the parabolas the two
distinct simple subquotients have the minimal types indicated by the colours of the two
branches.

Figure 5: Spec(Z(sl2 × sl2, sl2)
−).

4 Conjectural relationships with Langlands duality

The study of big and medium algebras [Hau24a] was motivated by mirror symmetry consid-
erations in [HH22, Hau23, Hau22, Hau24b]. In the semi-classical limit [DP12] the geometric
Langlands correspondence of Drinfeld–Laumon [Lau87] should give an equivalence of the
form

S : Db(MG)→ Db(MG∨)

between the derived categories of coherent sheaves for Langlands dual Hitchin systems

MG MG∨

hG↓ ↓ hG∨

AG
∼= AG∨

.

Here G is a complex reductive group with Langlands dual G∨. MG is the moduli space of G-
Higgs bundles (E,Φ) on a smooth complex projective curveC, withE principal G-bundle on
C and Φ ∈ H0(C; ad(E)⊗KC) is the canonical bundle KC-twisted Higgs field. The Hitchin
map [Hit87] is hG : MG → AG defined by evaluating invariant polynomials p ∈ C[g]G, on
g = Lie(G) the Lie algebra of G, on the Higgs field Φ. The generic fibers h−1

G (a) and h−1
G∨(a)

should be [HT03, DP12] dual Abelian varieties, and S generically should be Fourier-Mukai
transform.
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We expect [DP12] that S intertwines

Hµc ◦ S = S ◦Wµ
c (4.1)

the action of Wilson Wµ
c : Db(MG) → Db(MG) and Hecke operators Hµc := Db(MG∨) →

Db(MG∨). Here c ∈ C a point, µ ∈ X+(G) is a dominant character,Wµ
c is defined by tensoring

with the vector bundle ρµ(Ec), the universal G-bundle E on MG×C restricted to MG×{c} and
evaluated in the µ-highest weight representation ρµ : G → GL(V µ). On the other hand Hµc
is more technical to define, but heuristically, it should be given by Hecke transformations
of Higgs bundles of type µ at the point c. When µ is minuscule in type A this is defined
[HH22] using the elementary Hecke transformations of vector bundles on curves going back
to [NR78].

As S is generically a Fourier-Mukai transform, which maps the structure sheaf of an
Abelian variety to the skyscraper sheaf at the identity of the dual Abelian variety, we expect
that the mirror

S(OMG
) = OW+

0
(4.2)

of the structure sheaf OMG
of MG is the structure sheaf of W+

0 ⊂ MG∨ a section of the Hitchin
map hG∨ , called the Hitchin section [Hit92].

Combining (4.2) with (4.1) we should get

Hµ(OW+
0
) = S(Wµ

c (OMG
)) = S(ρµ(Ec)). (4.3)

In words: the Hecke transformed Hitchin section should be the mirror of the universal bun-
dle in a representation restricted to a point.

In type A, and for minuscule µ [HH22] indicated that Hµ(OW+
0
) = OW+

µ
the structure

sheaf of W+
µ , upward flow (the Bialinicky-Birula attracting set with respect to the natural

C×-action, scaling the Higgs field) from a certain very stable Higgs bundle Eµ, and in turn
checked the expectation (4.3) in this type A minuscule case

S(ρµ(Ec)) = OW+
µ

(4.4)

generically using Fourier-Mukai transform. In turn, [Fan25] checked (4.4), in some sense
over the whole Hitchin base.

Because OW+
µ

has the structure of sheaf of algebras we can ask what that structure in-
duces on its mirror ρµ(Ec)? From the property of the Fourier-Mukai transform mapping
multiplication to convolution we should have a certain sheaf of convolution algebra struc-
ture on ρµ(Ec). But over the Hitchin section (generically the locus of the identity elements
of the Abelian variety fibers) this structure should just be a sheaf of algebra structure on the
restriction of ρµ(Ec) to the Hitchin section of hG. In turn, when µ is minuscule, this structure
should be induced from the algebra structure on the medium algebra Mµ(g) ∼= Cµ(g) or
equivalently, because µ minuscule, the Kirillov algebra from Section 2.

Long story [Hau24b] short, the motivation to construct a sheaf of algebra structure on
ρµ(Ec) for a general µ ∈ Λ+ along the Hitchin section led [Hau24a] to the study of the Kir-
illov algebras Cµ(g), their medium algebras Mµ(g) and certain maximal commutative big
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algebras Bµ(g) in between

C[g]g ⊂Mµ(g) ⊂ Bµ(g) ⊂ Cµ(g). (4.5)

Morally, Bµ(g) over C[g]g should model the mirror S(ρµ(Ec)) over the Hitchin base C[AG∨ ]

and Spec(Mµ(g)) → Spec(C[g]g) should model the support Supp(S(ρµ(Ec)))
hG∨→ AG∨ over

the Hitchin base, which is conjecturally [Hau23, Conjecture 3.19] a multi-section of the Hitchin
map, given by the Lagrangian closure of the upward flowW+

µ . For an example when g = sl2
and µ = 5ϖ1 see Figure 4.

In [Hau24a] a filtered analogue (in Loc. cit. it was called quantum analogue) of the chain
of subalgebras (4.5) was constructed

Z(g) ⊂ Zµ(g) ⊂ Gµ(g) ⊂ Rµ(g)

in the Kostant algebra Rµ(g), where Zµ(g) is the filtered medium algebra of Section 1. Fi-
nally, the maximal commutative subalgebra Gµ(g) is the filtered big algebra of [Hau24a],
ultimately constructed from the Feigin-Frenkel center [FF92]. While these filtered versions
have interesting properties refining those of the classical counterparts in (4.5), it is not quite
clear what their role is in the mirror symmetry / Langlands duality picture we have been
discussing in this section. One possibility is that they could be modelling Lagrangians in
the de Rham version of the moduli spaces MG like opers, closer to the original geometric
Langlands correspondence [Lau87, BD96]. Another possibility is that they model certain
Lagrangians in certain irregular Higgs moduli spaces on C = P1, which have an exotic C×-
action, like the ones studied in [FFTL10].

Nevertheless, what we found in this note is that the filtered medium algebrasZµ(g) have
deep connections to the representation theory of complex Lie groups, which are relevant in
the local Langlands correspondence at the complex place. In future work we plan to explore
this representation theory from the point of view of the filtered big algebras Gµ.
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