SMOOTHNESS OF COHOMOLOGY SHEAVES OF STACKS OF
SHTUKAS

CONG XUE
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ABSTRACT. We prove, for all reductive groups, that the cohomology sheaves
with compact support of stacks of shtukas are ind-lisse over (X ~. N)! and that
their geometric generic fibers are equipped with an action of Weil(X ~ N,7)’.
Our method does not use any compactification of stacks of shtukas.

CONTENTS
Introduction 1
1. Reminder on Drinfeld’s lemmas 4
2. Application of Drinfeld’s lemma to the cohomology sheaves 8
3. Smoothness of the cohomology sheaves over (X ~ N)! 15
4. The case of non necessarily split groups 26
Appendix A. A reminder on ind-lisse sheaves 27
References 30
INTRODUCTION

Let X be a smooth projective geometrically connected curve over a finite field
F,. We denote by F' its function field. Let N C X be a finite subscheme.

Let G be a connected reductive group over F'. Let ¢ be a prime number not
dividing g. Let E be a finite extension of Q; containing a square root of ¢, with
ring of integers O and residual field kg. Let A € {E,Og, kg}.

R Until the last section, we assume that G is split to simplify the notations. Let
G be the Langlands dual group of G over A. We fix a lattice = in Zg(F)\Zc(A)
as in |Lafl8|, where Zg is the center of G (when G is semisimple, we can take
==1).

The cohomology sheaves of stacks of shtukas are defined in [Lafl8, Section 4|
for A = F and in [Laf18, Section 13| [Xue20c, Section 1| for A = Op. For A = kg
the method is the same. We refer to [Xue22] for a detailed reminder (for A = E).
Here is a brief reminder:

Let I be a finite set. We have the stack classifying G-shtukas with [-legs and
level N:

p: CthNJ — (X N N)I
1
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By the geometric Satake equivalence with coefficients in A ([MVO07, Theorem
14.1], |Gai07, Theorem 2.2, Theorem 2.6|, [Ricl4|, [CvdHS23|, the properties
that we needed are stated in |Lafl8, Theoreme 1.17]), for any W a finite type
A-linear representation of G! , we have a canonical perverse sheaf Fg y;w on
Chtg, n 1 for the perverse normalization relative to (X \ N)’. Tts support (denoted
by Chtg nrw) is a Deligne-Mumford stack locally of finite type. When W is
irreducible, F¢ v rw is (not canonically) isomorphic to the intersection complex
of ChtG,N,I,W-

To define the cohomology we need stacks of finite type. We have the Harder-
Narasimhan truncations indexed by Agad, the set of dominant coweights of G4
(the adjoint group of ). For every p € /A\Jéad we have a truncated open substack
of shtukas Chtéfﬁ\a 1w in Chte n rw. The quotient Chtéf‘ v.rw /2 is of finite type
(this is the reason why we need to consider the truncation by p and the quotient
by Z). We denote by

p=t: Chtgy /2 = (X N N)
We define the complex of truncated cohomology sheaves:
J{éﬁv,f,w = (p~")Fa.nrw

For A = E, this complex lives in D%((X ~ N)I,A). Tt is bounded in degrees
[—d,d] where d = dim Chtg v 7w —dim X!, For A = Og or kg, this complex
lives in D ((X ~ N)I,A). (See Remark 0.0.3.)

For any j € Z, we have the degree j truncated cohomology sheaf with compact
support :

J, Sp DI (<
Hewrw = R0 )Fanrw.

It is a constructible A-sheaf over (X ~\ N)’.
We define the complex of cohomology sheaves and the degree j cohomology
sheaf as the following inductive limits:

T <u .
Hewvgw =1 HEy 1 wi
n

j — 15 j7 Slu’
:HG,N,I,W = M%G,N,I,W'
“w

The cohomology sheaf f]'fé’ ~.1.w lives in the category of abstract inductive limits of
constructible A-sheaves over (X ~\ N)!. The complex Hg y 1w lives in the derived
category of abstract inductive limits of complexes of constructible A-sheaves over
(X ~ N)! (also known as ind-completion).

When I is the empty set and W the trivial representation, Hg, v ; y is the vector
space of automorphic forms with level N. For general I and W, an important
property of He v 7w is that it is equipped with an action of the Hecke algebra
and an action of the partial Frobenius morphisms. Note that these actions do
not preserve fHé“N W
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If the morphism from Chtg nrw /= to (X ~ N)! is proper !, we know that

the cohomology sheaves are lisse over (X ~ N)I. In general this morphism is not
proper (not even of finite type), the question is whether the cohomology sheaves
are still lisse over (X ~ N)’. Our main result gives a positive answer to this
question:

Theorem 0.0.1. (Theorem 3.2.3, Theorem 3.5.1) For any j € 7Z, for any u
sufficiently regular (i.e. far away from every wall in the Weyl chamber), the

constructible A-sheaf j{]é%\ﬁl,w is lisse over (X ~ N)L. The ind-constructible A-

sheaf g{é,N,I,W is ind-lisse over (X ~ N)I.

Here ind-lisse means inductive limit of lisse sheaves. The proof of Theorem 0.0.1
uses a "Zorro lemma" argument and the following intermediate result Proposition
0.0.2.

Let 1 be the generic point of X and 77 a geometric point over 7. Let n; be the
generic point of X! and 77 a geometric point over n;. We refer to 1.1.6 for more
details. Let Weil(n,77) be the Weil group of m(n, 7).

Proposition 0.0.2. (Proposition 2.2.1) The geometric generic fiber j{é,N,I,W -
is equipped with a canonical action of Weil(n,7)".

The proof of Proposition 0.0.2 uses Drinfeld’s lemma and some finiteness prop-
erty of ZHJGNIWLT.
b bl I

Remark 0.0.3. We mentioned above that for A = Og or kg, the complex
K w lives only in D7 ((X ~ N),A). To sece this, for example consider
the stacks of shtukas without leqg and without level, which is the discrete
stack Bung(F,). This stack contains [-/G(F,)] (corresponding to the trivial
G-bundle in Bung(F,)). When ( divides the cardinality of G(F,), the complex

H:([-/G(F,)], Zy) is unbounded below. In this case, g{éﬁw,w _is not a perfect
s

complex. Even when we suppose that ¢ does not divide the cardinal of G(F,), we

do not know if U-Céfjuw 18 a perfect complex. So we do not know if j{éﬁ\u,w

nr

i8 in Deons((X ~ N)I,A) in the sense of proetale topos of Bhatt and Scholze. At
the end, we do not know if Hea yrw 8 in Dindisse((X ~ N)T,A).

For A = E, the complex j'%ﬁv,z,w lives in DY((X ~ N)!,A). There is no such

problem.

Remark 0.0.4. Even in the case where Hg n.rw 8 i Dinaiisse((X ~ N)), I do
not know how to prove that He n 1w lives in (Dindrisse(X ~ N))®L.

Relation with literature. The result of smoothness is used in [AGKRRV].
The results of this article (and the "Zorro lemma" argument) are generalized
in [Sal23|, [Ete23] and [EX24].

For G anisotropic, for example a division algebra, see [Lau07, Theorem A] for the condition
when this morphism if proper. However, when G is split but not a torus, this morphism is
never of finite type.
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Notations and conventions. To simplify the notations, we will write J;
instead of the degree j cohomology sheaf H}, y ; v, except in Section 3.3.

Acknowledgments. [ would like to thank Vincent Lafforgue, Gérard Laumon
and Jack Thorne for stimulating discussions. I thank Dennis Gaitsgory and Yakov
Varshavsky for their suggestion of Section 3.3.

1. REMINDER ON DRINFELD’S LEMMAS

1.1. Sheaves with an action of the partial Frobenius morphisms.

1.1.1. Let I be a finite set. For any i € I, let
(1.1) Frobg : X' — X'
be the morphism sending (z;)jes to (27);er, with xj = Frob(z;) and 2} = z; if
j # i, where Frob is the absolute Frobenius morphism of X (i.e. identity on the
topological space and ¢-th power on the structure sheaf). They commute with
each other and the product [],.; Froby; is the total Frobenius morphism Frob,
i.e. the absolute Frobenius morphism of X.

1.1.2. Let G be a sheaf over X!. We say that G is equipped with an action of
the partial Frobenius morphisms if there exist isomorphisms of sheaves over X7,
defined for every i € I:

(1.2) F{i} . Frob’fi} 9 ; 9,

that commute with one another, such that the composition for all ¢ € I is the
total Frobenius isomorphism F : Frob* § = G.

Example 1.1.3. Let G be a sheaf over X! of the form G = X,;c;J;, where every
JF; is a sheaf over X. Then G is equipped with an action of the partial Frobenius
morphisms.

Example 1.1.4. Let X = P!. The pullback of the Artin-Schreier sheaf on Al
by the multiplication map A! x A — A!, extended by zero from A' x A! to
P! x P!, gives a sheaf on X? which cannot have an action of the partial Frobenius
morphisms.

1.1.5. We fix a geometric point 7 = Spec F' over the generic point 7 = Spec F of
X. We denote by

(77)[ = 1] XSpecF, *** XSpecFq 1] and (ﬁ)[ =1 XSpeCE T XSpecE 7.
Note that ()! and () are integral schemes.

1.1.6. We fix a geometric point 77 = Spec F; over the generic point 7; = Spec Fy
of X!. We fix a specialization map in X/

sp 7 — A7)
where A : X — X! is the diagonal inclusion. The specialization map sp induces
a morphism 77 — (7).
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1.1.7. As in |[Lafl8, Remarque 8.18|, we define

FWeil(nr,77) == {e € Autg;(Fy) | 3 (ni)ier € Z' ] e = [[(Frobgy)™}.
iel

where (F; )P is the perfection of Fy and Froby;y is the partial Frobenius morphism

defined in 1.1.1. We have a commutative diagram where the lines are exact

sequences:
(1.3) 0 — " (n7, 7M7) — FWeil(n;,777) — Z! —=0

| St

80 (), M) —— Weil(n, 7)! 7! 0

0 ——my

(n,
where morphism W is given by sending ¢ to (Frob " og;)ier, where each g; is the
restriction of € to F via 77 — (7)! bri, 7.

1.1.8. Let G be a sheaf over n;, equipped with an action of the partial Frobenius
morphisms. Then § }nT is equipped with a canonical action of FWeil(n;,77) in the
following way:

for any ¢ € FWeil(n;, 777) with 5! (Fpypert = [Lc; Froby, {Z}, it induces a commuta-
tive diagram (which is not Cartesian):

Spece

Spec I — Spec I
l [T;c; Frob? l
Spec(Fy)Pert o — i Spec(Fy)pert

We make it into a Cartesian diagram:

Spec F;

(IL;e; Frobf; ) Spec Fy

l [T;c; Frob? l
SpeC(F])perf er {i}

~

We deduce an isomorphism of schemes over Spec(Fy)Pet:

(] Frobysy)@m) = mr.
iel
In particular, it is a specialization map in Spec(Fy)P®f. We denote it by sp..
The action of ¢ on F ‘nT is defined to be the composition:

HFrob M St‘f

I

sp;
(1.4) ?\W BLEN ?|(Hi€IFrob o)
€1 777
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where the last morphism is the product of the partial Frobenius morphisms (which
are isomorphisms, and over Spec(F;)P*! the inverses Frob{_é are well defined).

1.2. Drinfeld’s lemma.

1.2.1. An action of FWeil(n;, 77) on a finite type A-module is said to be continuous
if the action of 75°™(n;,7r) is continuous.

More generally, an action of FWeil(n;,77) on a A-module M is said to be
continuous if M is an inductive limit of A-submodules of finite type which are
stable under 75" (n;,77) and on which the action of 7™ (n;,77) is continuous.
Lemma 1.2.2. (Drinfeld’s lemma) A continuous action of FWeil(n;,77) on a

A-module of finite type factors through Weil(n, 7)?.

Proof. For A = O or kg, it is proved in [Dri87, Proposition 1.1|, [Dri89, Proposi-
tion 6.1] and recalled in [Laf18, Lemme 8.2|. For A = E, it is proved by Drinfeld
(unpublished) and recalled in [Xue20b, Lemma 3.2.10].

Let’s briefly recall how we deduce the case A = FE from the case A = kg.
We defined the morphism ¥ : FWeil(n;,77) — Weil(n,7)! in 1.1.7. By [Dri89,
Proposition 6.1], Ker(¥) is equal to the intersection of all open subgroups of
75" (nr, M) which are normal in FWeil(n;,777). Let p : FWeil(n;, 77) — GL,.(E)
be a continuous morphism, then Ker(p|7r,1geom (mﬂTI)) is normal in FWeil(n;,777) and

geom geom

closed in 73" (nr, 777), and 7™ (n;,77)/ Ker(p‘ﬂgeom - TTI)) is topologically finitely
1 )

generated (i.e. there exists a dense finitely generated subgroup). Using properties
of profinite groups, we can prove that such a closed subgroup of 7™ (nr,77)

contains Ker (). O

Lemma 1.2.3. Let A be a finitely generated commutative A-algebra. A continu-
ous A-linear action of FWeil(n;,77) on an A-module of finite type factors through
Weil(n, )"

Proof. For A = E, it is [Xue20b, Lemma 3.2.13|. For A = Og, it is [Xue20c,
Lemma 8.2.4]. For A = kg the proof is similar. 0

1.3. Toy model: constructible sheaves. Let’s recall a simple but important
lemma:

Lemma 1.3.1. ([Lau04, Lemma 9.2.1], recalled in [Laf18, Lemme 8.12]) Let Z be
a proper closed subscheme of X!, stable under the action of the partial Frobenius
morphisms, then Z is included in a finite union of vertical divisors of X' (a

vertical divisor is the inverse image of a closed point by one of the projections
X — X).

For a A-constructible sheaf, since it is lisse over an open subscheme, we have
the following property:

Lemma 1.3.2. (consequence of [Lau04| Lemma 9.2.1) Let G be a A-constructible
sheaf over X!, equipped with an action of the partial Frobenius morphisms. Then
there exists an open dense subscheme U of X such that G is lisse over UY.
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Proof. Let € be the largest open subscheme of X7 such that G is lisse over €.
Then the complement of € is a proper closed subscheme of X?, stable under
the action of the partial Frobenius morphisms. By Lemma 1.3.1, this closed
subscheme is included in a finite union of vertical divisors of X?. So there exists
a dense open subscheme U of X such that U! C €. O

1.3.3. Let G be a A-constructible sheaf over X?, equipped with an action of the
partial Frobenius morphisms.
(1) On the one hand, § |n7 is equipped with a continuous action of FWeil(n;, 7).

By Lemma 1.2.2; this action factors through Weil(n, 7).
(2) On the other hand, by Lemma 1.3.2, G is lisse over U’. In particular, § is
lisse over (7).

By Lemma 1.3.4 below, 9‘ ) is a constant sheaf over (7).

Lemma 1.3.4. Let G be an ind-lisse A-sheaf over (M) equipped with an action
of FWeil(n;,77). If the action factors through Weil(n, ), then G is a constant
sheaf over (7)!.

Proof. By hypothesis, the action of Ker U = Ker(FWeil(n;,77) — Weil(n,7)!)
on 9’777 is trivial. Note that by (1.3), we have Ker U = Ker(n{*™ (n;,77) —

geom I

78" (n,m)!). Now let & be the generic point of (7).
commutative diagram

We have the following

W\ | generlc (@)’
(), ———— () Xi- SpecF,
S (g X! Speck,

Thus we have a canonical morphism 71(3,77) — mi((nr)g,, 1) = 71 (00, 77)-

By definition 7 (8,77) C Ker ¥, we deduce that the action of m(d,7r) on 9‘777 is
trivial.
Since § is ind-lisse over (7)), the action of m;(d,7;) on 9‘777 factors through the

quotient 7, ((7)7,77), and this action is also trivial. We deduce that 9|(ﬁ) ; Is a

constant sheaf over (7)7. O

1.4. Difficulty for a general ind-constructible sheaf.

1.4.1. A constructible A-sheaf over a scheme is lisse over an open subscheme.
However, an ind-constructible A-sheaf over a scheme may not be ind-lisse over
any open subscheme. For example, let I = {1,2} and (A), be the extension
by zero of the constant sheaf A over Frobf;,(A), where A is the image of the
diagonal morphism X < X2 Let G,, = ®&_j<n<m(A)n. It is a constructible
A-shealf, lisse over the open subscheme X? — U_,,<p<m Froby,(A). However, the
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ind-constructible A-sheaf G = hgnm Gm = Bnez(A), is not ind-lisse over any open
subscheme.

For this reason, there is no analogue of Lemma 1.3.2 for general ind-
constructible A-sheaves. Note that in the above example, the sheaf G is equipped
with an action of the partial Frobenius morphisms. But it is not ind-lisse even
over 1 Xg, 1.

1.4.2. The cohomology sheaf H;y is an ind-constructible A-sheaf, so we cannot
apply directly 1.3.3 to show that it is constant over ()!. In the next section,
instead of 1.3.3 (1), we will prove some finiteness property of H;y then apply
Lemma 1.2.3. Instead of 1.3.3 (2), we will use another method to prove that H;

is lisse over (7)”.

2. APPLICATION OF DRINFELD’S LEMMA TO THE COHOMOLOGY SHEAVES

2.1. Finiteness properties of cohomology groups.

2.1.1. By [Lafl8, Sections 3 and 4], the cohomology sheaf H; y is equipped with
an action of the partial Frobenius morphisms. By 1.1.8, H; w }nT is equipped with

a canonical action of FWeil(n,77). This action is continuous in the sense of 1.2.1,

. — < . .
because the action of 7" (n;,77) on each H7y,| is continuous.

ni

2.1.2. Let v be a place of X ~~ N. We denote by O, the complete local ring at
v and F, its field of fractions. Let 47, := C.(G(0,)\G(F,)/G(0,),A) be the
local Hecke algebra of G' at the place v. Note that J7;, is a finitely generated
A-algebra. By [Lafl8, Section 4.4], H I,W} ( is equipped with a canonical

action of ¢ ,.

XN (Nuv)!

2.1.3. We denote by RepA(CAJ) (resp. RepA(éI)) the category of finite type A-
linear representations of G (resp. G! ). We denote by Rep A(@)free the category of
representation of G on a free A-module of finite type. Note that for A = E these
categories are semisimple, but for A = Og or kg they are not semisimple.

Let’s recall the Eichler-Shimura relations:

Proposition 2.1.4. (For A = E, see [Laf18, Proposition 7.1|. For A = Op, see
[XZ17, Section 6.2] [Xue20c, Proposition 7.2.6|, the proof for A = kg is similar.)

~

For any finite set [ = T U{0} and W € Rep,(G?), there exists M € Rep, (G)™e,
such that

rk M
(2.1) > (=1 Speerr-apry o (Fg™)* =0 i
a=0
_ <p <ptk
HomD‘;((X\N)I xv,A) (}CLW (X\N)fxv’ Lw (X\N)fxv .

where Spxv-aypr, are the excursion operators constructed in loc.cit..



SMOOTHNESS OF COHOMOLOGY SHEAVES OF STACKS OF SHTUKAS 9

Proposition 2.1.5. ([Lafl8| Proposition 6.2, the proof works for any coefficients)
For any place v of X ~ N and any V € RepA(a), the excursion operator Sy,
defined in loc.cit., which is a morphism of sheaves over (X ~ N)I, extends the
Hecke operator T'(hy.,), which is a morphism of sheaves over (X ~ (N Uwv)).

Now we can prove the finiteness property of cohomology sheaves:

Proposition 2.1.6. The geometric generic fiber of the cohomology sheafﬂ{LW‘TI
18 an increasing union of sub A-modules M which are stable under the action of
FEWeil(n;, 777), and for which there exists a family (v;);er of closed points in X ~ N
(depending on M) such that M is stable under the action of @;cr e, and is of
finite type as module over Q;cr e 1, -

The proof is inspired by the proof of [Laf18, Lemme 8.30].
+
Gad»

is lisse. We choose a closed point v of 2. Let v; be the image
Q

of v under the projection to the i-th factor X/ P X. Then Xicrv; is a finite
union of closed points containing v. Let 9, be the image of

Proof. For every u € A we choose a dense open subscheme  of (X ~ N)!

such that I}CIS‘VLV

(2.2) Z (Qier e ;) - (H F{Z}((H Frob?;})*f]{?‘}/))

(ni)ieIGNI iel i€l T

in J{LW}W. We have
(2.3) Hew] =M.
o

By definition, the sub A-module 9, is stable under the action of FWeil(n, 77).

We only need to prove that 91, is of finite type as a ®;c;.5¢ ,-module. We
fix a geometric point v over v and a specialization map sp, : 7y — v. For any n;,
since

Fgﬁg(vi)ni : (Frob?ff(vi)ni)*}ff% — Hrw

is a morphism of sheaves, the specialization map sp, induces a commutative
diagram

d i) < sp d 5 )T <
(2.4) (Frob{es " ) 3t | 2= (Frobyee ™)™ ) 3¢5,
b ﬁ —_ 9 T]T
deg(v;)n; deg(v;)n;
Fliy j lF{i}
spy
Hrw ‘ﬁ }CLWL]—I

Note that Frob?ff(vi)"i(v) = v € Q, thus v € (Frob?ff(”i)"i)_lﬁ. The sheaf

(Frob?ff(vi)"i)*ﬂf%{jv is lisse over (Frob?ff(w)n")*lQ. Thus the upper line of (2.4)
is an isomorphism.
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By the Eichler-Shimura relations given by Proposition 2.1.4, for each i € I, we
have

rk M
> (=1 Speerr-apry (FE)* =0 in Hom(%f“w‘v, Hrwl.)
a=0

We deduce that

deg(v;) rk M deg(v;) tk M <
R (S S R
rk M—1

I i (G

)

viewed in }CI,W‘F. Since Sprkr-aps,, and Fp; are morphisms of sheaves, they
commute with sp;. We have
deg(v;)rtk M _ _x deg(vi) rk M\ x 1 <
F{i}g( ) 5pv((Frob{i}g( ) ) Hiw v)
rk M—1
de ;) deg(v; )y
c Z Spetent-ango PP apy ((Frobfid ™)) a5,

)

viewed in %I’W‘nT' Since the upper line of (2.4) is an isomorphism, we deduce
that

Fdeg(v,)rkM((F bdeg(vl)rkM) j_clg“

)

{i} W 1
(2.5) rk M—1
de Vi) deg(vi)a
C S/\rkM aMUz g( ) ((Fr b{}g ) ) U-CIS,/{;V ni)
Z i

By Proposition 2.1.5, Syska-a ., acts over 77 by an element of 77 ,,. We deduce
that 9, is equal to the image of

(2.6)
> (@ier ) - (T Fiy (T Frobpiy) aeih)
(mi)ier€ll;c;10,1,- ,deg(v;) (rk M—1)} i€l el I
in }CI’W}WT. Thus 90, is of finite type as a ®;c7G »,-module. O

Remark 2.1.7. In [Xue20b|, we proved a stronger result: HI’W‘UT s of finite

type as a module over a local Hecke algebra. (In Proposition 2.1.6 above :H:I’W‘W
1s only an inductive limit of such modules M, and the local Hecke algebra changes
with each M.) The proof uses the constant term morphisms of the cohomology of
stacks of shtukas (for the moment only written for split groups) and doesn’t use
the Fichler-Shimura relations.

The advantage of the proof of Proposition 2.1.6 given here is that it is easily
generalized to not necessarily split groups in Section 4.
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2.2. Action of the Weil group.

Proposition 2.2.1. The action of FWeil(n;,77) on J{I’WL]T factors through
Weil(n, 7)".

Proof. By Proposition 2.1.6, J—CLW}TTI is an increasing union of sub FWeil(n;, 777)-
representations 9. For every 91, we apply Lemma 1.2.3 to A = ®;¢;94., and
M = 9. We deduce that the action of FWeil(n;,77) on 9 factors through
Weil(n, 7)". O

2.3. Constancy over (7).

Proposition 2.3.1. The ind-constructible sheaf %ij‘(ﬁ), is ind-lisse over (7)!.

By Lemma A.0.3, it is enough to prove that for any geometric point T of (%)’
and any specialization map

5PN —> T
the induced morphism

(27) 5]3% : :}CI,W’E — %I’WLTI

is an isomorphism. The injectivity is similar to [Lafl8, Proposition 8.32| and
the surjectivity is similar to loc.cit. Proposition 8.31 (loc.cit. is for a special case
7 = A(7), where A is the diagonal morphism A : X — X7). The proof uses the
Eichler-Shimura relations and Lemma 2.3.2 below:

Lemma 2.3.2. (consequence of [Lau04] Lemma 9.2.1) Let x be a point of ().
The set {([1;c; Frob{};}) (%), (mi)ier € N'} ds Zariski dense in X'

Proof. The Zariski closure of this set is a closed subscheme Z of X, invariant by
the partial Frobenius morphisms. If Z is not equal to X!, by Lemma 1.3.1, Z
is included in a finite union of vertical divisors. However, the image of z in X’
is not included in any vertical divisor. This is a contradiction. We deduce that
Z =X OJ

Proof of Proposition 2.3.1:

Injectivity: the proof is the same as Proposition 8.32 of [Laf18], except that we
replace everywhere A(7) by T and replace everywhere A(7) by 7 (defined below).
For the reader’s convenience, we briefly recall the proof. Let a € Ker(spZ). We
want to prove that a = 0.

There exists o large enough and a € U-CIS“}? _, such that a is the image of @ in
5—(LW|§. We denote by z the image of Z in (X ~ N)! and {z} the Zariski closure
of z. Let Qy be a dense open subscheme of {x} such that F749| is lisse. Let

o

y be a closed point in €)y. Let ¥ be a geometric point over y and ;py T — Y a
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specialization map over €)y. We have a commutative diagram

*
5py

(2.8) M), ——= |,
o
Hiw }g Hrwl|.

is lisse. Thus

. . . . . <
The upper horizontal morphism is an isomorphism because H7iy
) QO

there exists b € HH

_such that a = 5p2(§) Let b be the image of b in Hy .
We have a = sp; (b).

Let y; be the image of y by (X \ N)! Py X \UN. Then x;c;y; is a finite union
of closed points containing y. Let d; = deg(y;). For any (n;)ic; € NI, we have
[Lc, Frob‘{i;l?i () = v. (Note that in general ], Frobf{l;?i (T) # =.) We have the
partial Frobenius morphism

]i[.FdnZ }C]W‘ HFI‘ObZZ) j’f[W

i€l i€l

— J'Cjw|,

7
Let

m el H Fdzm E J{I,W’g and A(ny)ser = spy( (ns) 161) S J_CI,W}T
i€l
In particular, b(),., = b and a(),., = a.
Let d = deg(y) = ppem({d;}icr). Note that J],., Froby, is the total Frobenius
morphism, thus the morphism

HFd[}L : j{LW|§ — j{LW|§
iel
is bijective. We have

(29) a(n,—f—nd/d ZEI H F nz zEI

el
[Laf18] Lemme 8.33 is still true if we replace everywhere A(7) by Z, replace ev-
erywhere A(7) by 7 and replace the the Eichler-Shimura relations [Lafl8, Propo-
sition 7.1| by Proposition 2.1.4. Thus we have:
(1) for all j € I and for all (n;);cr € N,
rk M
(2.10) Z(_UQSAM_QMﬁyj(a(nﬁa(;i’j)ie,) =0 in Hyw),.
a=0

. Let Ql

(2) Let g > o such that spi(a) € 5‘(?{}9 B _
nr nr

. . <pi
has zero image in Hryy,

be a dense open subscheme of (X \ N)! such that IJ-CIS‘;[}

is lisse. Then for every
Q1

(ms)ier € N' such that [],; Frob?g”i (x) € y, we have a(p,),., =0 in }CI,W’T-
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Note that the open subscheme

(2.11) N (] ] Frobgis) = ()

(ai)icr€lT;e {0, sk M—1} i€l

is dense in X' because €); is dense. By Lemma 1.3.1, there exists (Ni)ier € N/

such that [[,., Frobd?Ni(aj) is in (2.11). We deduce
[T Frob{™* ) (2) € Q for all (a)ies € [ {0, .1k M — 1},
el el
By (2), we deduce that
(2.12) A(Nytas)ie; = 0 for all (o)ier € H{O, <otk M — 1}
iel

By (1), for every j € I and (n;);e; € N,

rk M—1

(2'13> Anitrk M3 ;)icr = Z <_1)064—]&M‘S/\rkM_& M7yj(a“(ni+a5i,j)iel)
a=0

Using (2.12) and (2.13), by induction we deduce that
A(ny)ie; = 0 for all (n;)ier € N such that n; > N;, Vi € I

Thus for n > N; for all i € I, we have a(nd/q4,),., = 0. Then (2.9) implies
a(0),c; = 0. This proves the injectivity of sp;.

Surjectivity: To prove that spZ is surjective, it is enough to prove that for
every 1, we have 9, C Im(sp).

As in the proof of Proposition 2.1.6, we define ?5)\?; to be the image of

(2.14) > (@) - ([ Fu (] Frobli) 36G4)

(ni)ier€NI icl iel

nr
in .‘J—CLW}W. It is a subsheaf of J{I’W|TH' We have

m,

= mu7

I
where 9, is constructed in the proof of Proposition 2.1.6. Recall that the proof
of Proposition 2.1.6 implies that there exists po large enough such that

(2.15) M, C @it i, - HFY

nr

Let Qg be a dense open subscheme of (X ~. N) such that ﬂ{f{j& 0 is lisse. By
0

Lemma 1.3.1, the set {([[,c; Froby;) (@), (ms)ier € N’} is Zariski dense in X7.
We deduce that there exists (n;);er € N’, such that ([T, Frobiiy)(z) € .
Let the specialization map

(] ] Frobyiy)ses = (] ] Frobyy, — (] ] Frob,

el el el




14 CONG XUE
be the image of sp; by [],; Frob?;}. We have a commutative diagram

((Hie[ Frob?z.i} )spz)*

(2.16) Fto N ~ o .
Wl ([T Frob (i @) ~ "W (e Probs, ) )
% | ((Hie[ Frob?ii})spf)* i |
Lw ‘ (Iie; Froby}) (@) Lw | (I;e 7 Froby}y) (7)

is lisse.

The upper horizontal morphism is an isomorphism because 9{?%
K QO
Since the action of the Hecke algebra is given by morphisms of sheaves, it com-

mutes with (([];c; Frobyj,)spz)". We deduce that ®;e; 7z, ZHIS’V‘IE

(Ie Frobys,) (77)

(view as image in .'HLW|( ) is in the image of ((J[;c; Frobyj,)spz)".

[Licr FrOb?f})(’TI)
Choose an isomorphism (not canonical) 77 = ([];c; Frob{},)(7r), we deduce
from (2.15) that

2.17 m, C @uerH, - HE o
(217) (s Frovipam W (e Frob(s,) )
So M, ‘ is in the image of i Frobi )spo)*.

| (Lier Frobl) @) (e (ip)op2)

As in the proof of [Lafl8| Proposition 8.31. we have a commutative diagram
(2.18)

((Hie] FrOby{lii} )spz)* —

%I7W‘(HFrob?;})(z) %I,W‘(Hnob?;})(m >M,, (TTFrob,
:‘Hiel Fh | Thier Py l:
% > g m,
I,W‘j I,W}W—I >l
We deduce that 531\; is in the image of spZ.
m
O

Proposition 2.3.3. J{I’W|(ﬁ)1 is a constant sheaf over (7)".

Proof. (1) On the one hand, by Proposition 2.2.1, the action of
Ker ¥ = Ker(FWeil(n;, 77) — Weil(n, 7)) on 9{17W|n7 is trivial.

(2) On the other hand, Proposition 2.3.1 says that ﬂ-CLW|(ﬁ), is ind-lisse over
(m)".

A similar argument as in 1.3.3 implies that the action of 71 ((7)!,77) on H; w ‘777
is trivial. We deduce the result. 0J

2.4. Constancy over (1) Xz, U. To prove the smoothness result in the next
section, we need to prove Proposition 2.4.5. When [, is empty, we recover Propo-
sition 2.3.3.
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2.4.1. Let I be a disjoint union I; U I5. Let u be a closed point of (X ~\ N)2 and
u a geometric point over wu.

Let F be an ind-constructible A-sheaf over (n)"* xg, u, equipped with an
action of the partial Frobenius morphisms, i.e. for every ¢+ € [;, an isomor-
phism Fy;y : Frob, & = F and an isomorphism Fy, : Frob} ¥ = ¥, commut-
ing with each other and whose composition is the total Frobenius isomorphism
Frob* & = F over ()" xg, u. Then the fiber g‘ﬁxrﬁ is equipped with an action

q

of FWeil(ny,,71,)-
In particuler, the fiber of the cohomology sheaf JH IvW|nTx—* is equipped with
1%Fg ¥

a continuous action of FWeil(n,,71,).

Proposition 2.4.2. %I»W’nTx—ﬂ 1s an increasing union of sub A-modules N
1%

which are stable under the action of FWeil(ny,, 71, ), and for which there ezists a
family (v;)ier of closed points in X ~\~ N (depending on M) such that M is stable
under the action of ®;ec1 ., and is of finite type as module over ®;cr e v, -

Proof. Similar to Proposition 2.1.6. U
Proposition 2.4.3. The action of FWeil(n;,,71,) on HIW'WXW factors through
Weil(n, 7)™

Proof. Similar to Proposition 2.2.1. O

Proposition 2.4.4. }CI7W|(W)11>< _is ind-lisse over (G X, U.
7 0

Proof. Similar to Proposition 2.3.1. O

Proposition 2.4.5. J{I’W|(ﬁ)11x _is constant over ()" X5 .
e
Proof. Similar to Proposition 2.3.3. U

2.4.6. Let s be a closed point of X ~\~ N and s a geometric point over s. Let

(5)2 =5 Xz -~ X5 5
Then (3)2 is a special case of U, for u = A(s), where A : X — X2 is the diagonal

inclusion. By Proposition 2.4.5, j'CLW}(ﬁ)]lXi(g) 1, 18 constant over (7)" xg (3)".
Fq

3. SMOOTHNESS OF THE COHOMOLOGY SHEAVES OVER (X \ N)!

The goal of this section is to prove Theorem 3.2.3 and Theorem 3.3.1. We refer
to [Xue22| for the case when I is a singleton for illustration (in this case we only
need to consider S a henselian trait, i.e. spectrum of a henselian DVR). The
general case that we prove in this section is similar.

3.1. Some preparations.
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3.1.1. Let S be a local henselian ring over a perfect field & (not necessarily of
dimension one). Let s = Speck be the closed point and § = Spec K the generic
point. Fix an algebraic closure K of K. We denote by § = Spec K. It will be
enough for us to consider only the case where k is separably closed, i.e. we assume
k=k.

3.1.2. Let I be a finite set. Let (Z;);c; be a family of geometric points of S such
that 7; € {5,6}. We denote by X,c;7; the fiber product over Speck. Asin 1.1.5,
Xie1Z; 18 an integral scheme over Spec k.

Definition 3.1.3. Let § be an ind-constructible A-sheaf over ST (product of I-
copies of S over k). We say that G is a pseudo-product 2 if for any family (7;7)er
of geometric points of S such that z; € {5, 6}, the restriction § _ is a constant

o Xiel
sheaf over x;c7;.

Notation 3.1.4. For pseudo-product sheaf G, we denote
= F(XiEII_‘i) 9)

XieITi

Example 3.1.5. If § = X,c;F; where every F; is an ind-constructible A-sheaf
over S, then G is a pseudo-product.

Example 3.1.6. For any geometric point 7 of X \ N, let S = (X \ N)) be

the strict henselization of X ~\ N at 7. Let 5 = s = ¥ and § = 7. Then by 2.4.6,
H I,W| 1 18 & pseudo-product.
3.1.7. Our choice of § — S is a specialization map sp : 6 — 5. B

Let § be an ind-constructible A-sheaf over S, then sp : ¢ — 5 induces a
morphism (by restriction because 9|§ =T1(S,9))

¢071 : 9|§ - 9‘3

3.1.8. Let St be the normalization of § in S. T hen ST is still a local henselian
ring, with closed point s = § and generic point §. Let § be a pseudo-product
sheaf over S’. Tt is still a pseudo-product sheaf over (S+).

3.1.9. Let u be a geometric point over some X;c;7; in (ST)! and ¥ a geometric
point over some other x;c;Z; in (S*)!, with 7;, 77’ € {5, 6}. If @ is a specialization
of U (i.e. there exists a specialization map v — @, i.e. a morphism 7 — (S*)fm),
then we will construct a canonical morphism (for the moment it depends on T
and u, but does not depend on the choice of specialization map)

(3-1) ¢ﬂ,i G —+§

Here is the construction: denote by v the image of 7 in (ST)!. Note that x;c;T;
is a subscheme of (S*)!, thus v is a point over X;c;7;.

— —-
XieITi XieI i

2This is a condition, not a structure. I do not know if this condition is equivalent to being
in the essential image of (Shv(S))®!.
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For any specialization map a : v — u, it induces a morphism a* : 9|ﬂ — 9|i.
The group Gal(v/v) acts transitively on the set of specialization maps {v — u}
and acts on the set of induced morphisms 9’@ — 9|U by acting on 9|5.

Since G is a pseudo-product, it is constant over X;c;Z;, so is constant over v.
The action of Gal(v/v) on 9}5 is trivial. Thus the morphism 9|H — 9}5 does
not depend on the choice of specialization map. Moreover, since G is a pseudo-
product, we can identify 9’5 = 9|Xi61$7 and 9|€ = S‘Xiewﬁ_,. We obtain morphism
(3.1).

When I is a singleton, we recover 3.1.7.

Example 3.1.10. Let I = {1,2}, TIx T3 = 0 X5, T XT3 = 6 x6. Let U= x3
and T = 09, where dy is the generic point of S x S. Then (3.1) is a morphism
Sl5.5 = Slss

3.1.11. The canonical morphism (3.1) is compatible with the composition. Let w
be a geometric point over some x;c;z;” in (ST)!, with 7;” € {5,5}. Suppose that
u is a specialization of ¥ and v is a specialization of w. Then we have
%@ o ¢H,E = Quw
To see this, we choose specialization maps such that the following diagram of
specialization maps commutes (it is enough to choose W — @ to be the composi-
tion of W — ¥ and v — u):

w —

It induces a commutative diagram

(3:2) 9}w<_ 9‘5

N

Sl

g <=—¢<

By 3.1.9, these morphisms do not depend on the choice of specialization maps. We
identify (3.2) with the following commutative diagram of canonical morphisms:

-
] - 9| o

T¢u,v
bu,w

Sl ez
3.1.12. Now we prove that (3.1) constructed in 3.1.9 does not depend on w and .
Let @ be a geometric generic point of X;c;%; and ¥’ be a geometric generic point
of x,;crZ;. Then there exists specialization maps @’ — u and ¥ — ». Since there
exists a specialization map v — u, there exists a specialization map v’ — u'.
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By 3.1.11, we have
Ypw © Yap = 7%,@' = Vg5 © 1% '
Since G is constant over X;c;T; (resp. X;e;Z; ), we have Ozw = 1d (resp. G55 =
Id. We deduce ¢z5 = ¢ -

So ¢z constructed in 3.1.9 does not depend on the choice of geometric points
u and v. We obtain a canonical morphism

¢><337,><zZ 9‘

Construction 3.1.13. Let G be an ind-constructible A-sheaf over S x S which is
a pseudo-product. Applying 3.1.9-3.1.12 to ST x ST, we construct the following
canonical morphisms which form a commutative diagram:

!
XieITi ‘Xi61$i

10,11
(3.3) Sl5s Sl5.5
¢>00,10T ¢00,11/1 01,11
00,01
9 |§><§ 9 ‘Exg

Example 3.1.14. In Construction 3.1.13, when § = F; X F,, diagram (3.3)
coincides with

Tols © T, = Fi]5 © Fol
¢0,1®IdT ¢0,1®¢( T¢0,1®Id
?1‘§®?2‘§ S ?2‘§®?1’3

Construction 3.1.15. Let G be an ind-constructible A-sheaf over S x S x S
which is a pseudo-product. Applying 3.1.9-3.1.12 to ST x ST x ST, we construct
the following canonical morphisms which form a commutative diagram:

100,110
<34) 5><§ ng 5
$100,101
$110,111
9 $101,111 G s
EXE uuu 166 |3><g 010,110
$000,010 |
®001,101 Sttt g Sus
$000,001
$010,011
9 001,011
5 X6 § 5x8

3.1.16. The morphism induced by a specialization map is functorial for morphism
of sheaves §1 — G5. We deduce that the canonical morphism constructed in 3.1.9
is functorial for morphism of sheaves. In particular, Constructions 3.1.13 and
3.1.15 are functorial for morphism of sheaves.
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3.1.17. Let G be a pseudo-product sheaf over S x S x S. Consider the partial
diagonal morphism

A2} 14

(3.5) Sx ! LS %8x8

The restriction 9| AlL2(5 is a pseudo-product sheaf over S x S. Then (3.3) for

)xS
the sheaf 9‘ AL2)(8)xS coincides with the following commutative sub-diagram of

(3.4):

¢10,11=¢110,111

(36) 9‘§><3><§ 9|3><3><3
¢00,1o¢000,110T T¢01,11¢001,111
00,01 =%000,001
9 |§><§><§ 9 ‘Exgxg

In fact, this is because by 3.1.12, to construct the morphisms in (3.6), we can

choose geometric points over the subschemes A{12(5) x 3 (resp. A{L2H(§) x 3,

AL (3) x 6, AT2HE) x 0) of 5 x5 x 5 (resp. 0 X 0 X5, 58X 85X, 0 X6 X0).
Similarly, consider the partial diagonal morphism

(3.7) gx g LA gL 5xs.

The restriction 9| SxAL23Y(S is a pseudo-product sheaf over S x S. Then (3.3) for

)
the sheaf 9‘ SxAL23}H(S) coincides with the following commutative sub-diagram of

(3.4):
©10,11=%$100,111
9|3><§><§ 9|3><3><3
¢00,1o¢000,100T ]¢01,11¢011,111
00,01 =%000,011
9|§><§><§ 9’§><3><3

3.2. Smoothness of H; . Let I be a finite set and W & RepA(@I).

3.2.1. Let Iy = I, = I = I3 = I. We denote by
ABPEDE (XS N) 5 (XN N (XN N2 x (XN NP,
(%:)ier — ((xi)ieh, (Ti)icl,, (l‘z‘)z‘elg)
ABPE (XN N = (XN N X (XN N2 (@)ier = ((T0)ien s (23)ien)
AR (XN N = (XNN)EX (XN N)E (@)ier = ((T0)iens (23)ier,)

We denote by 1 the trivial representation of G!. Let unit : 1 — W* ®@ W be
the canonical morphism. As in |[Lafl8] Section 5, we define the creation operator
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Cf .= 41U (creating legs IoLUT3) to be the composition of morphisms of sheaves

over (X ~\ N)I x (X < N)%:

H(Idy X unit)

Hr,w BAx vy — Hyurwsa Hrun,wrw-ew)

(3.8) o
2UI3 j‘(: ‘
- LUl Uz, WHRW*KW (X\N)leAIZUIS ((X\N)I>

where H(Idy X unit) is by the functoriality associated to Idy Kunit : WX 1 —
WX (W*®W), xnur is the fusion isomorphism (|Laf18| Proposition 4.12) asso-
ciated to the map

[1|_|IQ|_|[3 —>'>[1|_|[0

sending I; to I by identity, I, to Iy by identity and I3 to Iy by identity.

Let ev : W@ W* — 1 be the evaluation map. We define the annihilation oper-
ator € := @»/1" (annihilating legs I, LI I5) to be the composition of morphisms
of sheaves over (X ~ N)' x (X ~ N)!:

XIyUlIq
” g'flol_l13,(W®W*)®W

3 |
AULUL WRW MW ALt (X N)T) x(XSN)1B

(3.9)
H(ev R Idy) ~
Mt AN Higurs 1w — A(X\N)I X Hp,w

where H(ev X Idy) is by the functoriality associated to ev X Idy : (W @ W*) X
W — 1 X W, x5 is the fusion isomorphism associated to the map

Il|_|]2|_113 —»]0|_|I3
sending I; to Iy by identity, I to Iy by identity and I3 to I3 by identity.
Lemma 3.2.2. ("Zorro" lemma, |Lafl18| (6.18)) The composition of morphisms
of sheaves over (X ~ N)!:

et eb
(3.10) Hyw — gfﬁu@ug,vv&W*&vv‘ ) — Hpw

Alijulauls ((X\N)I
15 the identity.
Proof. By the fusion property of Satake sheaves, we have
g-cllulgulg,W&W*&W|A11u12u13((X\N)1) ~ Hrwew-gw.

The composition of morphisms of vector spaces

W (Id,unit) WeW* oW (ev,Id) W
is identity. The lemma follows from the functoriality on W. 0
Theorem 3.2.3. The ind-constructible A-sheaf Hyy is ind-lisse over (X ~ N)I.

Proof. By Lemma A.0.3, it is enough to prove that for any geometric point T of
(X \ N)! and any specialization map sp. : 77 — 7, the induced morphism

(311) 5]3; : :H:I,W’j — :H:I’WLTI

is an isomorphism.
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Let v be the composition of the following morphisms:

et
g'fh,WLTI & A}j — %Ilulgl_lly,,W&W*&W{HTXAIQLII:)) @)

(o) — {
- }C11UIQU137W|EW*|XW TIXTXT

$100,110
(3.12) —— Hpunur, waw-xw ’ﬁxmxi
(8

) - J{IlLJIQUIg,W@W*ﬁVV|A11u12(ﬁ1)><§
AL @K
— |777 X 137W‘f'

Here is the construction of the morphism ¢yg0110: let S = ((X ~ N)!)z) be the
strict henselization of (X \ N)! at 7, its closed point is Z. The specialization map
sp; © M7 — T is a morphism 7y — S. By Proposition 2.4.5, Hp,unum, wew-zw
is constant over (7)/1"295 (resp. (m)hH2 x T, ()1 x T, ()29 x T), thus
constant over 77 X 77 X Ty (vresp. T X f X T, Tf X T X Tj, T X 77 X 7). So
Hrunur,wew-rw is a pseudo-product over S x S x S. We apply Construction
3.1.15to § = Hpunun, wew+sw, s = S = T, 0= N1, 0 the image of 77 in S.

The equality («) is evident and the equality (3) is because Hp,ir,ur weaw smw
is constant over 7y X 77 X .

By Lemma 3.2.4 and Lemma 3.2.5 below, v is the inverse of sp*. U

Lemma 3.2.4. The composition vy o sp* is the identity.

Proof. The following diagram is commutative:

(3.13)
5 A * ¥ A
117W|f® ‘I [17W|n7® |f
et et
I 00,10 %
LUl U3 WRW* KW ‘EXAIQU% (@) LHULUI3, WKW*XW ‘777[><A12u13 )
$000,100

IXE %Ilufgufg,wgw*gw‘mx

$100,110
$000,110

- j-(:Il|_|IQIJI3,VV@VV*XWV|

}CIlUIQUIg,WIXW*&W‘EX EXE

NIXNIXT

$00,10

%11U[2U137W|Z|W*|Z|W ‘A11u12 (7)xT g-CIlUIQUIg,W@W*X]W | A1UIo (M) x7

e e>

Id

A|E®}CI37W‘E A‘nT®:H:I3vW|§

The first square is commutative because Construction 3.1.13 commutes with the
morphism of sheaves Cf. The second square is commutative because we identify
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Po0,10 With @ooo,100 as in 3.1.17 for § = Hy,ur,um,wew-sw and A3 The middle
triangle is commutative by Construction 3.1.15. The next square is commutative
because we identify ¢ooo 110 With ¢g 10 as in 3.1.17 for G = Hp, Lpur, wrwzw and
AU The last square is commutative because Construction 3.1.13 commutes
with the morphism of sheaves €.

The composition of right vertical morphisms is v. By Lemma 3.2.2, the com-
position of the left vertical morphisms is the identity. Since A is a constant sheaf,
the lower horizontal line is identity. So 7 o sp* is the identity. U

Lemma 3.2.5. The composition sp* oy is the identity.

Proof. The following diagram is commutative

(3.14)
Hrw| @A 1 Hw| @A
AT T LY Iy n1
et et
I 10,11 %
11L|IQL|13,W®W*®W‘ﬁIXAlzulg(i) Ilu]QuI37W®W*®W|ﬁIXAI2uI3(ﬁ])
$100,111

Hunur,wew-sw }m EXT Hiunur, wawzw ‘

©100,110
®110,111

H | =
LULUIs WRW*BW |5 o v

Ny XN XNy

10,11

Hrunun,waw-aw ’Allulz( %Ilulzulg,W®W*®W|Allu12 (77) XTI

NI)XT

e e

sp*

Al ® I, Al ®Hwl

The first square is commutative because Construction 3.1.13 commutes with the
morphism of sheaves €. The second square is commutative because we identify
$10.11 With ¢100111 as in 3.1.17 for § = Hy,Lpur wewrw and A5 The middle
triangle is commutative by Construction 3.1.15. The next square is commutative
because we 1dent1fy ¢110,111 with ¢10711 asin 3.1.17 for 9 = j‘(:[luhul&wgw*gw and
ANBE - The last square is commutative because Construction 3.1.13 commutes
with the morphism of sheaves €.
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__is constant, we have canonical isomorphisms:

Since H x ’
NUIUI WRW S RW |

j{IlUIQHI:g,W@W *XW |T][><A12ul3

/ \

T XATXTT %I1UIQU13,W|XW*|ZW A11u12u13(m)

\ /

%Ilulgulg,W®W*®W|A11u12 @)

g-CIlUIQUIg,WE’W*lZ’W ‘

XNr

Using this, we identify the composition of right vertical morphisms with

:HII,W‘— ® A’f <, fH:huhuk,WlZW*&W’A11u12u15( <, A’f @ Hpyw

By Lemma 3.2.2, the composition is the identity.

The composition of left vertical morphisms is 7. Since A is a constant sheaf,
the upper horizontal line is identity. So sp* o 7y is the identity. U
Corollary 3.2.6. (of Theorem 3.2.3) The action of Weil(n,n)! on }CI’WL)T (de-
fined in Proposition 2.2.1) factors through Weil(X ~ N,7)L.

Proof. Let K := Ker(Weil(n,7) — Weil(X \ N,7)). We want to prove that the
action of K7 on H; |nT is trivial. Let = be a closed point of X \N. Since for every
1 € I, the restriction :}CLW|(X\N)><($)I*“} is ind-lisse, we deduce that the action
of K (the i-th factor in K1) on H; W|n><(a:)

over (X ~ N)!, we have an equivariant isomorphism H; W’, 2110 S H; W|7

/_q 1s trivial. Since Hjy is ind-lisse

Considering this for every ¢ € I, we deduce that the action of K Ton H I7W|n7 is
trivial.

Remark 3.2.7. For any geometric point © of X N\ N, let S = (X \ N)@) be the
strict henselization of X ~ N at v and let ST be the normalization of 7 m S. By
Theorem 3.2.8, Hyw is ind-lisse over (X ~ N)!, so its pullback is ind-lisse over
(ST)L. By Proposition 2.5.3, H[,W|(ﬁ)1 is a constant sheaf over (7)!. Since (7)!

is open in (ST)!, we deduce that Hyyw is constant over (ST)!.

3.3. Smoothness of J-CISCV The statement as well as the proof of the following
theorem are due to Dennis Gaitsgory and Yakov Varshavsky. (Private communi-
cation.)

In this subsection, we revert to the original notation in the introduction and
denote by 3¢, y ;yp the degree j cohomoplogy sheaf and H¢ 1w the complex of
cohomoplogy sheaves.

Theorem 3.3.1. For u € KJGrad sufficiently reqular (i.e. far away from every wall
in the Weyl chamber),

(1) .‘HJC;JSV’},W is lisse over (X ~ N)I

(2) the morphism HJG’JSV’fI,W — Hg n o 88 injective.
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3.3.2. The proof uses Theorem 3.2.3 and the constant term morphisms con-
structed in [Xue20a| (for A = E) and [Xue20c| (for A = Og, kg). Let’s briefly
recall:

Let P be a parabolic subgroup of G and M bg\ its Levi quotient. For W €
Rep A(Gl ), we can view W as a representation of M’ via the canonical inclusion
M! < G'. Then we define the complex of cohomology sheaves of stack of M-
shtukas H'y n 7 -

In [Xue20a, Section 4.1], for any u € AGad, we defined a set Sy (u) = {\ €
A-i-@

ad | # — A is a linear combination of simple coroots of M with coefficients in
Q>0 modulo Agg}. We define

S
Chtcz%l; w = U ChtG N,IW
AESH (1)

where Chtng’LW is the inverse image of Bung” (defined in loc.cit. Definition
4.1.3) by Chtg nrw — Bung, the morphism which sending a G-shtuka to the
corresponding G-bundle. We define
Sna (1)
S = Pl )

Similarly we define Cht ]\%{, I)W and ﬂ{/]\j%(?)w

Then loc.cit. Proposition 4.6.4 (the construction is geometric, so works for any
coefficients) says that for u € Agad sufficiently regular, the truncated constant
term morphism over (X \ N):

(3.15) e HEN D — HrR

is an isomorphism.

Now we are ready to give the proof of Theorem 3.3.1. We say that a complex
is (ind-)lisse if every cohomology is (ind-)lisse.

Proof. In the proof, we denote Hg := He nrw and Hyy = FHy, -

(1) We use an induction argument on the semisimple rank of G. When G is of
semisimple rank 0, i.e. G is a torus, there is only one element in /AXZ,ad, so only
one term in the inductive limit Hg. It is constructible and by Theorem 3.2.3 it
is lisse.

Now we suppose that Theorem 3.3.1 (1) is true for every proper Levi subgroup
M. For any \ € A+ld, we have the following fact: fHSM equals to .’J-C]?/[’\/ for
some dominant co- welght N of M. (We refer to [Xue20a Section 4.1 and the
proof of Lemma 5.3.4| for details.) For A sufficiently regular, \" is also sufficiently

regular, by the induction hypothesis, %1%4/ is lisse over X', so is }CSM N, By
(3.15), 37V s also lisse over X'
For any u € AGdd, the open immersion Chté,”l’w — Chte 1w induces a cone in

the derived category (oo-derived category of ind-constructible sheaves):

(3.16) HE — He — Ha/HG" =
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Let p € Agﬁ be sufficiently regular. We construct a zigzag chain
=X <A <o <N <

as in the proof of [Xue20a, Lemma 5.3.6] and [Xue20b, Proposition 2.2.4| (but in
the inverse sense). To construct the chain, for ¢ > 1, choose \; = \;_1 + %@- for

some simple coroot [; of GG such that \; € /AXJGFS is still sufficiently regular (here
we introduce r € N only for technical reason. We fix r as in [Xue20a, 5.1.1]).
Take M; to be the Levi subgroup whose simple coroots are the simple coroots of
G except (;. By definition we have

NeALI NS A = e LI N < Nt} = S (M)

An example of the chain is given in Example 3.3.3 below.
For every \; (i > 1) in the chain we have a cone in the derived category

Ha/HE = Ho/HG — HE/HE 5

and 9{5)"‘/9{2’\“1 = f}{gj\{i(/\i). In this way the quotient Hg/H5" has a filtration

with associated graded %Zkfi()\i).

Since all \; are sufficiently regular, ngMi(Ai) are lisse. Taking into account
Lemma A.0.3, we deduce that U'C(;/U'Cé“ is ind-lisse over X7.

By Theorem 3.2.3, H¢ is ind-lisse over X/. We deduce from (3.16) that F5"
is lisse over X!. In particular, for any degree j € Z, ijG’S“ is lisse. O

(2) In [Xue20a, Proposition 5.1.5 (c)| and [Xue20c, Proposition 3.2.7 (c)|, we
proved that for u sufficiently regular, the restriction of the morphism J{QS’” — J{Jé
over 77 is injective (this is a consequence of the following fact, which is proved in
[Xue20a, Proposition 5.1.5 (b)] and [Xue20c, Proposition 3.2.7 (b)]: there exists
o sufficiently regular, such that for any A > po and A sufficiently regular, the
morphism

Ker(HE =" <5 T HY) — Ker(HE= <5 ] HY)
PCG Pca@
is surjective, where HJ = J{JG}W, Hl, = ﬂ-(f'w‘m and CT are the
constant term morphisms. Besides, for A large enough, we have
Ker(H;=" — H.L) = Ker(HL™ — HL™). We deduce from these
two facts that for A sufficiently regular, Hé: X Hg; is injective). Since both
sheaves are (ind)-lisse, the morphism itself is injective. O

Example 3.3.3. (of the chain.) Let G = GL3. It has two simple coroots: aj,
ay. Let Mgz, = GLy x GLo, whose simple coroots are the simple coroots of G
except ay, and Mgz, = GLy x GLy, whose simple coroots are the simple coroots
of G except Q.

In the following picture we illustrate a chain g = Ao < A\ < Ao < A3---. In
this chain, \y = pu + %ag, i.e. using the notation in the proof of Theorem 3.3.1,
we take ) = dp and My = Mg,. We have

INeRLI A<= e MRS N < Ao} = S, (M),
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Similarly Ay = Ay + @, (where ; = @y and M, = Mg,). If we continue in the
direction of ap we will be out of the zone "sufficiently regular", so we change to
the direction of a; and let A3 = \y + %&1 (where 83 = @; and M3 = Mg,). Then
we continue...

N Ma,
?.‘(

1

Remark 3.3.4. We do not know a direct proof of Theorem 3.3.1 without using
Theorem 3.2.3.

Since we have proved Theorem 3.3.1, we can finally write H; - as the inductive
limit of lisse sheaves J{IS’I},

4. THE CASE OF NON NECESSARILY SPLIT GROUPS

Now let G be a geometrically connected smooth reductive group over F| i.e.
over the generic point 1 of X. As in |Lafl8, Section 12|, let U be the maximal
open subscheme of X such that G' extends to a smooth reductive group scheme
over U. We choose a parahoric integral model of GG at all points of X \U. Gluing
these integral models over U and over the formal neighborhoods of the points of
X N U, we obtain a smooth group scheme over X. We still denote it by G.

Let “G be the L-group over A.

We denote by N = |N|U(X \U). We use the definition of cohomology sheaves
of stacks of shtukas in |Lafl8, Section 12|, where we use the geometric Satake
equivalence (|Zhulb| for A = E, [ALRR24] for A = E, O, kg, the properties that
we needed are stated in [Laf18, Theoreme 12.16]). For any finite set I and any W
finite type A-linear representation of (*G)! we have the complex of cohomology
sheaves

T; <p
Hanpw =1 He y 1w
m

over (X ~ N)!, where the Harder-Narasimhan truncations are given in [Lafl8,
Section 12].

It is equipped with an action of the partial Frobenius morphisms and an action
of the Hecke algebra.
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Sections 1-3 (except 3.3) still work if we replace everywhere (X ~ N)! by
(X N~ N) and G by LG.

Remark 4.0.1. Theorem 3.5.1 should still hold, once we have the constant term
morphisms for general reductive groups. However, the constant term morphisms
are only written down for split groups for the moment. For non split groups, the
construction will need the generalization of the Harder-Narasimhan stratification
of [Schl15] to non split groups, which are not yet written down (we do not think
there are really difficulty).

Compare with the easy Harder-Narasimhan stratification given by GL,, the
Harder-Narasimhan stratification in [Sch15| is more canonical and really related
to parabolic induction. For Eichler-Shimura relation, the former one is enough.
But to construct the constant term morphisms, it would be better to use the latter
one.

APPENDIX A. A REMINDER ON IND-LISSE SHEAVES

A.0.1. We use [SGA4] VIII 7 for the definition of specialization maps.

Let Y be a normal irreducible noetherian scheme over F,. By [SGA4] IX
Proposition 2.11, a constructible A-sheaf F over Y is lisse if and only if for any
geometric points Z, ¥ of Y and any specialization map sp : ¥ — 7, the induced
morphism

sp* fﬂf—> fﬂy

is an isomorphism.

A02 Let H =1 e F, be an inductive limit of constructible A-sheaves over

a scheme Y, where (2 is a filtered set. We say that the ind-constructible A-sheaf
H is ind-lisse if we can write JH as an inductive limit of lisse A-sheaves over Y,
i.e. there exists a filtered set €2 and lisse A-sheaves Gy for X € ' such that

Holing,, o S

Lemma A.0.3. Let Y be a normal irreducible noetherian scheme over F,. An
ind-constructible A-sheaf H over Y is ind-lisse if and only if for any geometric
points T, y of Y and any specialization map sp : y — T, the induced morphism

sp* s H|_— K|
T Y
s an isomorphism.

A.0.4. To prove Lemma A.0.3, we need some preparations. Let H = ligAGQ Fy

as above. For any A < p in 2, the kernel Ker(F, — F,) is a constructible
sub-A-sheaf of Fy. For A < p; < o, we have

Ker(Fy — J,,) C Ker(F\ — F,,) C Ker(Fy = H) C F).

Since ) is constructible and Y is noetherian, we deduce that there exists Ay, such
that for all © > Ao, we have Ker(F, — ;) = Ker(Fy — F,). (The argument is
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similar to the proof of Lemma 58.73.2 of [StacksProject].) So Im(Fy — Fy,) —
Im(Fy — F,). We denote by Fy := Im(F\ — F),). We have

AEQ AR

For any A\ < Ay, J)\, — T, is injective.
Proof of Lemma A.0.3: One direction is obvious. Let’s prove the converse
direction. Let ¢ be the generic point of Y and ¢ a geometric point over §. By the
hypothesis, for any geometric point Z of Y and any specialization map sp : § — T,
the induced morphism sp* : ﬂf|5 — 9{‘5 is an isomorphism.

By A.0.4, we can suppose that for any Ay < Ay, F\, — T, is injective. Since
every F, is a constructible A-sheaf over Y, there exists an open dense subscheme
U, of Y such that F), is lisse over Uy. Let 7, : Uy — Y be the embedding. Let

Ga = ()(Taly,,)-

To prove that H is ind-lisse, it is enough to prove that

(1) every G, is a lisse A-sheaf over YV’

(2) lim, o T = limy, ., 5

Proof of (1): on the one hand, for every A, by Lemma A.0.5 below, the mor-
phism sp* : 9,\15 — 9A’g is injective.

On the other hand, for every A, the adjunction morphism Id — (jx)«(jr)*
induces a morphism

(A.2) Fr = (J2)«(70)"Fr = G

Taking limit, we deduce a morphism ¢ : hﬂ F\— h_n>n Gx. We have a commutative
diagram

(A.3) liny 5] 2 lim T

O
hﬂ 9 ‘f - hgl 9x |S

By the hypothesis the upper line of (A.3) is an isomorphism. By the definition of
G, the right vertical line of (A.3) is an isomorphism. Thus the lower line of (A.3)
is surjective. We want to show that for every A, sp* : 9,\‘f — 9,\‘3 is surjective.
Let a € SA}S, then there exists © > A and b € 9#‘5 such that the image of b in
9#‘5 coincides with the image of a. We identify 9,\‘5 = %l5 9#‘3 = u}g- Since
Y is normal irreducible, we identify G| = I'(Yiz) x 0,F2), S|, = T(Yia) X 6, F).
Since 3'“,\|g C Fpul5 if b € I'(Y(z) x 6,F,) and the restriction of b to 3’”“‘5 is in F)
then b is in I'(Yz) % 6,F,). We deduce that sp* : Gx|_ — G

By A.0.1, we deduce that G, is a lisse A-sheaf over Y.

Proof of (2): since every G, is lisse and for A\; < A9, Gy, ‘5 — G, ‘5 is injective,
we deduce that Gy, — G, is injective. Since for any A, the morphism sp* :
9,\‘f — 9,\|g is injective, we deduce that the lower line of (A.3) is injective. So

5

‘g is surjective.
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the lower line of (A.3) is an isomorphism. Thus the left vertical line of (A.3) is
also an isomorphism, for any 7.

By Lemma A.0.6 below, ¢ : lignﬂ}\ — hgl G, is an isomorphism. O

Lemma A.0.5. Let Y be a normal irreducible noetherian scheme over F, and
j U <=Y be an open subscheme. Let F be a lisse A-sheaf over U. Let G = j,F.
Then for any specialization map sp : § — T, the induced morphism sp* : 9‘@ —
9|§ 18 injective.

Proof. 1t is enough to prove for 7 = §, a geometric generic point of Y. Denote by
Y(z) the strict henselization of Y at 7. Note that 9‘5 =I'(Y),5.3) =T Yz xv
U,¥F) and 9|3 = fﬂg. By [SGA1]| I Proposition 10.1, since Y is normal connected,
the fiber product Yz xy U is connected. Since J is lisse, for any V' connected

etale over Y, I'(V.F) = F |gm(v,3) . We deduce that the restriction
I'(Ya) xy U,F) = F|5
is injective. O

Lemma A.0.6. Let ¢ : limJF, — lim G, be a morphism of ind-constructible
sheaves over Y induced by Fy — Gy for every A. If for every geometric point y,
ap}y ; ligff,\‘y — liggﬂy 15 an isomorphism, then ¢ is an isomorphism.

Proof. By A.0.4, we can suppose that all morphisms in hg F\ and in hﬂ G, are
injective. For any A and any ¥y, we have a commutative diagram

(A.4) %\yg hﬂ%‘

Lk

9,\%%11&9,\‘

y

Yy
We deduce that ?,\‘g — 9,\‘§ is injective. Since this is true for any y, we deduce

that &, — G, is injective.
Now fix A. For any > A, consider the subset of YV’

C, = {y € Y such that 9,\‘g ¢ Im(?u|y — 9#’§)}
It is constructible. For any p; < po, we have C,, D Cy,. Since @‘y is surjective
for any 7, we have N,C,, = . We deduce that there exists x° (depending on \),
such that for any p > 1%, we have C,, = 0. In particular, Gy C Im(F,0 — G,0).
Thus for any A, we have

FyC G, C ﬁruo
This implies
AEQ AEQ
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