
SMOOTHNESS OF COHOMOLOGY SHEAVES OF STACKS OF
SHTUKAS

CONG XUE

To Gérard Laumon, with deepest admiration and gratitude.

Abstract. We prove, for all reductive groups, that the cohomology sheaves
with compact support of stacks of shtukas are ind-lisse over (X∖N)I and that
their geometric generic fibers are equipped with an action of Weil(X ∖N, η)I .
Our method does not use any compactification of stacks of shtukas.
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Introduction

Let X be a smooth projective geometrically connected curve over a finite field
Fq. We denote by F its function field. Let N ⊂ X be a finite subscheme.

Let G be a connected reductive group over F . Let ℓ be a prime number not
dividing q. Let E be a finite extension of Qℓ containing a square root of q, with
ring of integers OE and residual field kE. Let Λ ∈ {E,OE, kE}.

Until the last section, we assume that G is split to simplify the notations. Let
Ĝ be the Langlands dual group of G over Λ. We fix a lattice Ξ in ZG(F )\ZG(A)
as in [Laf18], where ZG is the center of G (when G is semisimple, we can take
Ξ = 1).

The cohomology sheaves of stacks of shtukas are defined in [Laf18, Section 4]
for Λ = E and in [Laf18, Section 13] [Xue20c, Section 1] for Λ = OE. For Λ = kE
the method is the same. We refer to [Xue22] for a detailed reminder (for Λ = E).
Here is a brief reminder:

Let I be a finite set. We have the stack classifying G-shtukas with I-legs and
level N :

p : ChtG,N,I → (X ∖N)I

1
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By the geometric Satake equivalence with coefficients in Λ ([MV07, Theorem
14.1], [Gai07, Theorem 2.2, Theorem 2.6], [Ric14], [CvdHS23], the properties
that we needed are stated in [Laf18, Theoreme 1.17]), for any W a finite type
Λ-linear representation of ĜI , we have a canonical perverse sheaf FG,N,I,W on
ChtG,N,I for the perverse normalization relative to (X∖N)I . Its support (denoted
by ChtG,N,I,W ) is a Deligne-Mumford stack locally of finite type. When W is
irreducible, FG,N,I,W is (not canonically) isomorphic to the intersection complex
of ChtG,N,I,W .

To define the cohomology we need stacks of finite type. We have the Harder-
Narasimhan truncations indexed by Λ̂+

Gad , the set of dominant coweights of Gad

(the adjoint group of G). For every µ ∈ Λ̂+
Gad we have a truncated open substack

of shtukas Cht≤µ
G,N,I,W in ChtG,N,I,W . The quotient Cht≤µ

G,N,I,W /Ξ is of finite type
(this is the reason why we need to consider the truncation by µ and the quotient
by Ξ). We denote by

p≤µ : Cht≤µ
G,N,I /Ξ → (X ∖N)I

We define the complex of truncated cohomology sheaves:

H
≤µ
G,N,I,W := (p≤µ)!FG,N,I,W

For Λ = E, this complex lives in Db
c((X ∖ N)I ,Λ). It is bounded in degrees

[−d, d] where d = dimChtG,N,I,W − dimXI . For Λ = OE or kE, this complex
lives in D−

c ((X ∖N)I ,Λ). (See Remark 0.0.3.)
For any j ∈ Z, we have the degree j truncated cohomology sheaf with compact

support :
H

j,≤µ
G,N,I,W := Rj(p≤µ)!FG,N,I,W .

It is a constructible Λ-sheaf over (X ∖N)I .
We define the complex of cohomology sheaves and the degree j cohomology

sheaf as the following inductive limits:

HG,N,I,W := lim−→
µ

H
≤µ
G,N,I,W ;

H
j
G,N,I,W := lim−→

µ

H
j,≤µ
G,N,I,W .

The cohomology sheaf Hj
G,N,I,W lives in the category of abstract inductive limits of

constructible Λ-sheaves over (X∖N)I . The complex HG,N,I,W lives in the derived
category of abstract inductive limits of complexes of constructible Λ-sheaves over
(X ∖N)I (also known as ind-completion).

When I is the empty set andW the trivial representation, H0
G,N,I,W is the vector

space of automorphic forms with level N . For general I and W , an important
property of HG,N,I,W is that it is equipped with an action of the Hecke algebra
and an action of the partial Frobenius morphisms. Note that these actions do
not preserve H

≤µ
G,N,I,W .
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If the morphism from ChtG,N,I,W /Ξ to (X ∖ N)I is proper 1, we know that
the cohomology sheaves are lisse over (X ∖N)I . In general this morphism is not
proper (not even of finite type), the question is whether the cohomology sheaves
are still lisse over (X ∖ N)I . Our main result gives a positive answer to this
question:

Theorem 0.0.1. (Theorem 3.2.3, Theorem 3.3.1) For any j ∈ Z, for any µ
sufficiently regular (i.e. far away from every wall in the Weyl chamber), the
constructible Λ-sheaf Hj,≤µ

G,N,I,W is lisse over (X ∖ N)I . The ind-constructible Λ-
sheaf Hj

G,N,I,W is ind-lisse over (X ∖N)I .

Here ind-lisse means inductive limit of lisse sheaves. The proof of Theorem 0.0.1
uses a "Zorro lemma" argument and the following intermediate result Proposition
0.0.2.

Let η be the generic point of X and η a geometric point over η. Let ηI be the
generic point of XI and ηI a geometric point over ηI . We refer to 1.1.6 for more
details. Let Weil(η, η) be the Weil group of π1(η, η).

Proposition 0.0.2. (Proposition 2.2.1) The geometric generic fiber H
j
G,N,I,W

∣∣
ηI

is equipped with a canonical action of Weil(η, η)I .

The proof of Proposition 0.0.2 uses Drinfeld’s lemma and some finiteness prop-
erty of Hj

G,N,I,W

∣∣
ηI

.

Remark 0.0.3. We mentioned above that for Λ = OE or kE, the complex
H

≤µ
G,N,I,W lives only in D−

c ((X ∖ N)I ,Λ). To see this, for example consider
the stacks of shtukas without leg and without level, which is the discrete
stack BunG(Fq). This stack contains [·/G(Fq)] (corresponding to the trivial
G-bundle in BunG(Fq)). When ℓ divides the cardinality of G(Fq), the complex
H∗

c ([·/G(Fq)],Zℓ) is unbounded below. In this case, H
≤µ
G,N,I,W

∣∣∣
ηI

is not a perfect

complex. Even when we suppose that ℓ does not divide the cardinal of G(Fq), we
do not know if H≤µ

G,N,I,W

∣∣∣
ηI

is a perfect complex. So we do not know if H≤µ
G,N,I,W

is in Dcons((X ∖N)I ,Λ) in the sense of proetale topos of Bhatt and Scholze. At
the end, we do not know if HG,N,I,W is in Dindlisse((X ∖N)I ,Λ).

For Λ = E, the complex H
≤µ
G,N,I,W lives in Db

c((X ∖N)I ,Λ). There is no such
problem.

Remark 0.0.4. Even in the case where HG,N,I,W is in Dindlisse((X ∖N)I), I do
not know how to prove that HG,N,I,W lives in (Dindlisse(X ∖N))⊗I .

Relation with literature. The result of smoothness is used in [AGKRRV].
The results of this article (and the "Zorro lemma" argument) are generalized

in [Sal23], [Ete23] and [EX24].
1For G anisotropic, for example a division algebra, see [Lau07, Theorem A] for the condition

when this morphism if proper. However, when G is split but not a torus, this morphism is
never of finite type.
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Notations and conventions. To simplify the notations, we will write HI,W

instead of the degree j cohomology sheaf Hj
G,N,I,W , except in Section 3.3.

Acknowledgments. I would like to thank Vincent Lafforgue, Gérard Laumon
and Jack Thorne for stimulating discussions. I thank Dennis Gaitsgory and Yakov
Varshavsky for their suggestion of Section 3.3.

1. Reminder on Drinfeld’s lemmas

1.1. Sheaves with an action of the partial Frobenius morphisms.

1.1.1. Let I be a finite set. For any i ∈ I, let

(1.1) Frob{i} : X
I → XI

be the morphism sending (xj)j∈I to (x′j)j∈I , with x′i = Frob(xi) and x′j = xj if
j ̸= i, where Frob is the absolute Frobenius morphism of X (i.e. identity on the
topological space and q-th power on the structure sheaf). They commute with
each other and the product

∏
i∈I Frob{i} is the total Frobenius morphism Frob,

i.e. the absolute Frobenius morphism of XI .

1.1.2. Let G be a sheaf over XI . We say that G is equipped with an action of
the partial Frobenius morphisms if there exist isomorphisms of sheaves over XI ,
defined for every i ∈ I:

(1.2) F{i} : Frob
∗
{i} G

∼→ G,

that commute with one another, such that the composition for all i ∈ I is the
total Frobenius isomorphism F : Frob∗ G

∼→ G.

Example 1.1.3. Let G be a sheaf over XI of the form G = ⊠i∈IFi, where every
Fi is a sheaf over X. Then G is equipped with an action of the partial Frobenius
morphisms.

Example 1.1.4. Let X = P1. The pullback of the Artin-Schreier sheaf on A1

by the multiplication map A1 × A1 → A1, extended by zero from A1 × A1 to
P1×P1, gives a sheaf on X2 which cannot have an action of the partial Frobenius
morphisms.

1.1.5. We fix a geometric point η = SpecF over the generic point η = SpecF of
X. We denote by

(η)I := η ×SpecFq · · · ×SpecFq η and (η)I := η ×SpecFq
· · · ×SpecFq

η.

Note that (η)I and (η)I are integral schemes.

1.1.6. We fix a geometric point ηI = SpecFI over the generic point ηI = SpecFI

of XI . We fix a specialization map in XI

sp : ηI → ∆(η)

where ∆ : X → XI is the diagonal inclusion. The specialization map sp induces
a morphism ηI → (η)I .
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1.1.7. As in [Laf18, Remarque 8.18], we define

FWeil(ηI , ηI) := {ε ∈ AutFq
(FI) | ∃ (ni)i∈I ∈ ZI , ε

∣∣
(FI)perf

=
∏
i∈I

(Frob{i})
ni}.

where (FI)
perf is the perfection of FI and Frob{i} is the partial Frobenius morphism

defined in 1.1.1. We have a commutative diagram where the lines are exact
sequences:

(1.3) 0 // πgeom
1 (ηI , ηI) //

����

FWeil(ηI , ηI) //

Ψ����

ZI //

≃
��

0

0 // πgeom
1 (η, η)I //Weil(η, η)I // ZI // 0

where morphism Ψ is given by sending ε to (Frob−ni

{i} ◦εi)i∈I , where each εi is the

restriction of ε to F via ηI → (η)I
pri−→ η.

1.1.8. Let G be a sheaf over ηI , equipped with an action of the partial Frobenius
morphisms. Then G

∣∣
ηI

is equipped with a canonical action of FWeil(ηI , ηI) in the
following way:

for any ε ∈ FWeil(ηI , ηI) with ε
∣∣
(FI)perf

=
∏

i∈I Frob
ni

{i}, it induces a commuta-
tive diagram (which is not Cartesian):

SpecFI

��

Spec ε

≃
// SpecFI

��
Spec(FI)

perf

∏
i∈I Frob

ni
{i}

≃
// Spec(FI)

perf

We make it into a Cartesian diagram:

SpecFI

Spec ε

≃
--

&&

≃
**

(
∏

i∈I Frob
ni

{i}) SpecFI

��

≃
// SpecFI

��
Spec(FI)

perf

∏
i∈I Frob

ni
{i}

≃
// Spec(FI)

perf

We deduce an isomorphism of schemes over Spec(FI)
perf :

(
∏
i∈I

Frobni

{i})(ηI)
∼→ ηI .

In particular, it is a specialization map in Spec(FI)
perf . We denote it by spε.

The action of ε on F
∣∣
ηI

is defined to be the composition:

(1.4) F
∣∣
ηI

sp∗ε−→ F
∣∣
(
∏

i∈I Frob
ni
{i})(ηI)

=
(
(
∏
i∈I

Frobni

{i})
∗F

)∣∣∣∣∣
ηI

∏
i∈I F

ni
{i}−−−−−→ F

∣∣
ηI
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where the last morphism is the product of the partial Frobenius morphisms (which
are isomorphisms, and over Spec(FI)

perf the inverses Frob−1
{i} are well defined).

1.2. Drinfeld’s lemma.

1.2.1. An action of FWeil(ηI , ηI) on a finite type Λ-module is said to be continuous
if the action of πgeom

1 (ηI , ηI) is continuous.
More generally, an action of FWeil(ηI , ηI) on a Λ-module M is said to be

continuous if M is an inductive limit of Λ-submodules of finite type which are
stable under πgeom

1 (ηI , ηI) and on which the action of πgeom
1 (ηI , ηI) is continuous.

Lemma 1.2.2. (Drinfeld’s lemma) A continuous action of FWeil(ηI , ηI) on a
Λ-module of finite type factors through Weil(η, η)I .

Proof. For Λ = OE or kE, it is proved in [Dri87, Proposition 1.1], [Dri89, Proposi-
tion 6.1] and recalled in [Laf18, Lemme 8.2]. For Λ = E, it is proved by Drinfeld
(unpublished) and recalled in [Xue20b, Lemma 3.2.10].

Let’s briefly recall how we deduce the case Λ = E from the case Λ = kE.
We defined the morphism Ψ : FWeil(ηI , ηI) → Weil(η, η)I in 1.1.7. By [Dri89,
Proposition 6.1], Ker(Ψ) is equal to the intersection of all open subgroups of
πgeom
1 (ηI , ηI) which are normal in FWeil(ηI , ηI). Let ρ : FWeil(ηI , ηI) → GLr(E)

be a continuous morphism, then Ker(ρ
∣∣
πgeom
1 (ηI ,ηI)

) is normal in FWeil(ηI , ηI) and
closed in πgeom

1 (ηI , ηI), and πgeom
1 (ηI , ηI)/Ker(ρ

∣∣
πgeom
1 (ηI ,ηI)

) is topologically finitely
generated (i.e. there exists a dense finitely generated subgroup). Using properties
of profinite groups, we can prove that such a closed subgroup of πgeom

1 (ηI , ηI)
contains Ker(Ψ). □

Lemma 1.2.3. Let A be a finitely generated commutative Λ-algebra. A continu-
ous A-linear action of FWeil(ηI , ηI) on an A-module of finite type factors through
Weil(η, η)I .

Proof. For Λ = E, it is [Xue20b, Lemma 3.2.13]. For Λ = OE, it is [Xue20c,
Lemma 8.2.4]. For Λ = kE the proof is similar. □

1.3. Toy model: constructible sheaves. Let’s recall a simple but important
lemma:

Lemma 1.3.1. ([Lau04, Lemma 9.2.1], recalled in [Laf18, Lemme 8.12]) Let Z be
a proper closed subscheme of XI , stable under the action of the partial Frobenius
morphisms, then Z is included in a finite union of vertical divisors of XI (a
vertical divisor is the inverse image of a closed point by one of the projections
XI → X).

For a Λ-constructible sheaf, since it is lisse over an open subscheme, we have
the following property:

Lemma 1.3.2. (consequence of [Lau04] Lemma 9.2.1) Let G be a Λ-constructible
sheaf over XI , equipped with an action of the partial Frobenius morphisms. Then
there exists an open dense subscheme U of X such that G is lisse over U I .
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Proof. Let Ω be the largest open subscheme of XI such that G is lisse over Ω.
Then the complement of Ω is a proper closed subscheme of XI , stable under
the action of the partial Frobenius morphisms. By Lemma 1.3.1, this closed
subscheme is included in a finite union of vertical divisors of XI . So there exists
a dense open subscheme U of X such that U I ⊂ Ω. □

1.3.3. Let G be a Λ-constructible sheaf over XI , equipped with an action of the
partial Frobenius morphisms.

(1) On the one hand, G
∣∣
ηI

is equipped with a continuous action of FWeil(ηI , ηI).
By Lemma 1.2.2, this action factors through Weil(η, η)I .

(2) On the other hand, by Lemma 1.3.2, G is lisse over U I . In particular, G is
lisse over (η)I .

By Lemma 1.3.4 below, G
∣∣
(η)I

is a constant sheaf over (η)I .

Lemma 1.3.4. Let G be an ind-lisse Λ-sheaf over (η)I equipped with an action
of FWeil(ηI , ηI). If the action factors through Weil(η, η)I , then G is a constant
sheaf over (η)I .

Proof. By hypothesis, the action of KerΨ = Ker(FWeil(ηI , ηI) → Weil(η, η)I)
on G

∣∣
ηI

is trivial. Note that by (1.3), we have KerΨ ∼= Ker(πgeom
1 (ηI , ηI) →

πgeom
1 (η, η)I). Now let δ be the generic point of (η)I . We have the following

commutative diagram

ηI //

%%

��

δ
generic //

��

(η)I

��
(ηI)Fq

generic //

��

(η)IFq

��

// XI
Fq

��

// SpecFq

��
ηI

generic // (η)I // XI // SpecFq

Thus we have a canonical morphism π1(δ, ηI) → π1((ηI)Fq
, ηI) = πgeom

1 (ηI , ηI).
By definition π1(δ, ηI) ⊂ KerΨ, we deduce that the action of π1(δ, ηI) on G

∣∣
ηI

is
trivial.

Since G is ind-lisse over (η)I , the action of π1(δ, ηI) on G
∣∣
ηI

factors through the
quotient π1((η)I , ηI), and this action is also trivial. We deduce that G

∣∣
(η)I

is a
constant sheaf over (η)I . □

1.4. Difficulty for a general ind-constructible sheaf.

1.4.1. A constructible Λ-sheaf over a scheme is lisse over an open subscheme.
However, an ind-constructible Λ-sheaf over a scheme may not be ind-lisse over
any open subscheme. For example, let I = {1, 2} and (Λ)n be the extension
by zero of the constant sheaf Λ over Frobn

{1}(∆), where ∆ is the image of the
diagonal morphism X ↪→ X2. Let Gm = ⊕−m≤n≤m(Λ)n. It is a constructible
Λ-sheaf, lisse over the open subscheme X2 −∪−m≤n≤m Frobn

{1}(∆). However, the
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ind-constructible Λ-sheaf G = lim−→m
Gm = ⊕n∈Z(Λ)n is not ind-lisse over any open

subscheme.
For this reason, there is no analogue of Lemma 1.3.2 for general ind-

constructible Λ-sheaves. Note that in the above example, the sheaf G is equipped
with an action of the partial Frobenius morphisms. But it is not ind-lisse even
over η ×Fq η.

1.4.2. The cohomology sheaf HI,W is an ind-constructible Λ-sheaf, so we cannot
apply directly 1.3.3 to show that it is constant over (η)I . In the next section,
instead of 1.3.3 (1), we will prove some finiteness property of HI,W then apply
Lemma 1.2.3. Instead of 1.3.3 (2), we will use another method to prove that HI,W

is lisse over (η)I .

2. Application of Drinfeld’s lemma to the cohomology sheaves

2.1. Finiteness properties of cohomology groups.

2.1.1. By [Laf18, Sections 3 and 4], the cohomology sheaf HI,W is equipped with
an action of the partial Frobenius morphisms. By 1.1.8, HI,W

∣∣
ηI

is equipped with
a canonical action of FWeil(ηI , ηI). This action is continuous in the sense of 1.2.1,
because the action of πgeom

1 (ηI , ηI) on each H
≤µ
I,W

∣∣∣
ηI

is continuous.

2.1.2. Let v be a place of X ∖ N . We denote by Ov the complete local ring at
v and Fv its field of fractions. Let HG,v := Cc(G(Ov)\G(Fv)/G(Ov),Λ) be the
local Hecke algebra of G at the place v. Note that HG,v is a finitely generated
Λ-algebra. By [Laf18, Section 4.4], HI,W

∣∣
(X∖(N∪v))I is equipped with a canonical

action of HG,v.

2.1.3. We denote by RepΛ(Ĝ) (resp. RepΛ(Ĝ
I)) the category of finite type Λ-

linear representations of Ĝ (resp. ĜI). We denote by RepΛ(Ĝ)
free the category of

representation of Ĝ on a free Λ-module of finite type. Note that for Λ = E these
categories are semisimple, but for Λ = OE or kE they are not semisimple.

Let’s recall the Eichler-Shimura relations:

Proposition 2.1.4. (For Λ = E, see [Laf18, Proposition 7.1]. For Λ = OE, see
[XZ17, Section 6.2] [Xue20c, Proposition 7.2.6], the proof for Λ = kE is similar.)
For any finite set I = Ĩ ∪ {0} and W ∈ RepΛ(Ĝ

I), there exists M ∈ RepΛ(Ĝ)
free,

such that

(2.1)
rkM∑
α=0

(−1)αS∧rkM−αM,v ◦ (F
deg(v)
{0} )α = 0 in

HomD−
c ((X∖N)Ĩ×v,Λ)(H

≤µ
I,W

∣∣∣
(X∖N)Ĩ×v

,H≤µ+κ
I,W

∣∣∣
(X∖N)Ĩ×v

).

where S∧rkM−αM,v are the excursion operators constructed in loc.cit..
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Proposition 2.1.5. ([Laf18] Proposition 6.2, the proof works for any coefficients)
For any place v of X ∖ N and any V ∈ RepΛ(Ĝ), the excursion operator SV,v

defined in loc.cit., which is a morphism of sheaves over (X ∖ N)I , extends the
Hecke operator T (hV,v), which is a morphism of sheaves over (X ∖ (N ∪ v))I .

Now we can prove the finiteness property of cohomology sheaves:

Proposition 2.1.6. The geometric generic fiber of the cohomology sheaf HI,W

∣∣
ηI

is an increasing union of sub Λ-modules M which are stable under the action of
FWeil(ηI , ηI), and for which there exists a family (vi)i∈I of closed points in X∖N
(depending on M) such that M is stable under the action of ⊗i∈IHG,vi and is of
finite type as module over ⊗i∈IHG,vi.

The proof is inspired by the proof of [Laf18, Lemme 8.30].

Proof. For every µ ∈ Λ̂+
Gad , we choose a dense open subscheme Ω of (X ∖ N)I

such that H
≤µ
I,W

∣∣∣
Ω

is lisse. We choose a closed point v of Ω. Let vi be the image

of v under the projection to the i-th factor XI pri−→ X. Then ×i∈Ivi is a finite
union of closed points containing v. Let Mµ be the image of

(2.2)
∑

(ni)i∈I∈NI

(⊗i∈IHG,vi) ·
(∏

i∈I

F ni

{i}((
∏
i∈I

Frobni

{i})
∗H

≤µ
I,W )

)∣∣∣∣∣
ηI

in HI,W

∣∣
ηI

. We have

(2.3) HI,W

∣∣
ηI

=
⋃
µ

Mµ.

By definition, the sub Λ-module Mµ is stable under the action of FWeil(ηI , ηI).
We only need to prove that Mµ is of finite type as a ⊗i∈IHG,vi-module. We

fix a geometric point v over v and a specialization map spv : ηI → v. For any ni,
since

F
deg(vi)ni

{i} : (Frob
deg(vi)ni

{i} )∗H≤µ
I,W → HI,W

is a morphism of sheaves, the specialization map spv induces a commutative
diagram

(2.4) (Frob
deg(vi)ni

{i} )∗H≤µ
I,W

∣∣∣
v

sp∗v

≃
//

F
deg(vi)ni
{i}

��

(Frob
deg(vi)ni

{i} )∗H≤µ
I,W

∣∣∣
ηI

F
deg(vi)ni
{i}
��

HI,W

∣∣
v

sp∗v // HI,W

∣∣
ηI

Note that Frob
deg(vi)ni

{i} (v) = v ∈ Ω, thus v ∈ (Frob
deg(vi)ni

{i} )−1Ω. The sheaf
(Frob

deg(vi)ni

{i} )∗H≤µ
I,W is lisse over (Frob

deg(vi)ni

{i} )−1Ω. Thus the upper line of (2.4)
is an isomorphism.
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By the Eichler-Shimura relations given by Proposition 2.1.4, for each i ∈ I, we
have

rkM∑
α=0

(−1)αS∧rkM−αM,vi(F
deg(vi)
{i} )α = 0 in Hom(H≤µ

I,W

∣∣∣
v
,HI,W

∣∣
v
)

We deduce that

F
deg(vi) rkM
{i}

(
(Frob

deg(vi) rkM
{i} )∗H≤µ

I,W

∣∣∣
v

)
⊂

rkM−1∑
α=0

S∧rkM−αM,viF
deg(vi)α
{i}

(
(Frob

deg(vi)α
{i} )∗H≤µ

I,W

∣∣∣
v

)
viewed in HI,W

∣∣
v
. Since S∧rkM−αM,vi and F{i} are morphisms of sheaves, they

commute with sp∗v. We have

F
deg(vi) rkM
{i} sp∗v

(
(Frob

deg(vi) rkM
{i} )∗H≤µ

I,W

∣∣∣
v

)
⊂

rkM−1∑
α=0

S∧rkM−αM,viF
deg(vi)α
{i} sp∗v

(
(Frob

deg(vi)α
{i} )∗H≤µ

I,W

∣∣∣
v

)
viewed in HI,W

∣∣
ηI

. Since the upper line of (2.4) is an isomorphism, we deduce
that

(2.5)

F
deg(vi) rkM
{i}

(
(Frob

deg(vi) rkM
{i} )∗H≤µ

I,W

∣∣∣
ηI

)
⊂

rkM−1∑
α=0

S∧rkM−αM,viF
deg(vi)α
{i}

(
(Frob

deg(vi)α
{i} )∗H≤µ

I,W

∣∣∣
ηI

)
By Proposition 2.1.5, S∧rkM−αM,vi acts over ηI by an element of HG,vi . We deduce
that Mµ is equal to the image of
(2.6) ∑

(ni)i∈I∈
∏

i∈I{0,1,··· ,deg(vi)(rkM−1)}

(⊗i∈IHG,vi) ·
(∏

i∈I

F ni

{i}((
∏
i∈I

Frobni

{i})
∗H

≤µ
I,W )

)∣∣∣∣∣
ηI

in HI,W

∣∣
ηI

. Thus Mµ is of finite type as a ⊗i∈IHG,vi-module. □

Remark 2.1.7. In [Xue20b], we proved a stronger result: HI,W

∣∣
ηI

is of finite
type as a module over a local Hecke algebra. (In Proposition 2.1.6 above HI,W

∣∣
ηI

is only an inductive limit of such modules M, and the local Hecke algebra changes
with each M.) The proof uses the constant term morphisms of the cohomology of
stacks of shtukas (for the moment only written for split groups) and doesn’t use
the Eichler-Shimura relations.

The advantage of the proof of Proposition 2.1.6 given here is that it is easily
generalized to not necessarily split groups in Section 4.
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2.2. Action of the Weil group.

Proposition 2.2.1. The action of FWeil(ηI , ηI) on HI,W

∣∣
ηI

factors through
Weil(η, η)I .

Proof. By Proposition 2.1.6, HI,W

∣∣
ηI

is an increasing union of sub FWeil(ηI , ηI)-
representations M. For every M, we apply Lemma 1.2.3 to A = ⊗i∈IHG,vi and
M = M. We deduce that the action of FWeil(ηI , ηI) on M factors through
Weil(η, η)I . □

2.3. Constancy over (η)I.

Proposition 2.3.1. The ind-constructible sheaf HI,W

∣∣
(η)I

is ind-lisse over (η)I .

By Lemma A.0.3, it is enough to prove that for any geometric point x of (η)I
and any specialization map

spx : ηI → x

the induced morphism

(2.7) sp∗x : HI,W

∣∣
x
→ HI,W

∣∣
ηI

is an isomorphism. The injectivity is similar to [Laf18, Proposition 8.32] and
the surjectivity is similar to loc.cit. Proposition 8.31 (loc.cit. is for a special case
x = ∆(η), where ∆ is the diagonal morphism ∆ : X ↪→ XI). The proof uses the
Eichler-Shimura relations and Lemma 2.3.2 below:

Lemma 2.3.2. (consequence of [Lau04] Lemma 9.2.1) Let x be a point of (η)I .
The set {(

∏
i∈I Frob

mi

{i})(x), (mi)i∈I ∈ NI} is Zariski dense in XI .

Proof. The Zariski closure of this set is a closed subscheme Z of XI , invariant by
the partial Frobenius morphisms. If Z is not equal to XI , by Lemma 1.3.1, Z
is included in a finite union of vertical divisors. However, the image of x in XI

is not included in any vertical divisor. This is a contradiction. We deduce that
Z = XI . □

Proof of Proposition 2.3.1:
Injectivity: the proof is the same as Proposition 8.32 of [Laf18], except that we

replace everywhere ∆(η) by x and replace everywhere ∆(v) by y (defined below).
For the reader’s convenience, we briefly recall the proof. Let a ∈ Ker(sp∗x). We
want to prove that a = 0.

There exists µ0 large enough and ã ∈ H
≤µ0

I,W

∣∣∣
x
, such that a is the image of ã in

HI,W

∣∣
x
. We denote by x the image of x in (X ∖N)I and {x} the Zariski closure

of x. Let Ω0 be a dense open subscheme of {x} such that H
≤µ0

I,W

∣∣∣
Ω0

is lisse. Let
y be a closed point in Ω0. Let y be a geometric point over y and spy : x → y a
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specialization map over Ω0. We have a commutative diagram

(2.8) H
≤µ0

I,W

∣∣∣
y

sp∗y

≃
//

��

H
≤µ0

I,W

∣∣∣
x

��

HI,W

∣∣
y

sp∗y // HI,W

∣∣
x

The upper horizontal morphism is an isomorphism because H≤µ0

I,W

∣∣∣
Ω0

is lisse. Thus

there exists b̃ ∈ H
≤µ0

I,W

∣∣∣
y

such that ã = sp∗y (̃b). Let b be the image of b̃ in HI,W

∣∣
y
.

We have a = sp∗y(b).
Let yi be the image of y by (X∖N)I

pri−→ X∖N . Then ×i∈Iyi is a finite union
of closed points containing y. Let di = deg(yi). For any (ni)i∈I ∈ NI , we have∏

i∈I Frob
dini

{i} (y) = y. (Note that in general
∏

i∈I Frob
dini

{i} (x) ̸= x.) We have the
partial Frobenius morphism∏

i∈I

F dini

{i} : HI,W

∣∣
y
= (

∏
i∈I

Frobdini

{i} )∗HI,W

∣∣∣∣∣
y

→ HI,W

∣∣
y

Let

b(ni)i∈I
=

∏
i∈I

F dini

{i} (b) ∈ HI,W

∣∣
y

and a(ni)i∈I
= sp∗y(b(ni)i∈I

) ∈ HI,W

∣∣
x
.

In particular, b(0)i∈I
= b and a(0)i∈I

= a.
Let d = deg(y) = ppcm({di}i∈I). Note that

∏
i∈I Frob{i} is the total Frobenius

morphism, thus the morphism∏
i∈I

F dn
{i} : HI,W

∣∣
x
→ HI,W

∣∣
x

is bijective. We have

(2.9) a(ni+nd/di)i∈I
=

∏
i∈I

F dn
{i}(a(ni)i∈I

).

[Laf18] Lemme 8.33 is still true if we replace everywhere ∆(η) by x, replace ev-
erywhere ∆(v) by y and replace the the Eichler-Shimura relations [Laf18, Propo-
sition 7.1] by Proposition 2.1.4. Thus we have:

(1) for all j ∈ I and for all (ni)i∈I ∈ NI ,

(2.10)
rkM∑
α=0

(−1)αS∧rkM−α M,yj
(a(ni+αδi,j)i∈I

) = 0 in HI,W

∣∣
x
.

(2) Let µ1 ≥ µ0 such that sp∗x(ã) ∈ H
≤µ0

I,W

∣∣∣
ηI

has zero image in H
≤µ1

I,W

∣∣∣
ηI

. Let Ω1

be a dense open subscheme of (X∖N)I such that H≤µ1

I,W

∣∣∣
Ω1

is lisse. Then for every

(mi)i∈I ∈ NI such that
∏

i∈I Frob
dimi

{i} (x) ∈ Ω1, we have a(mi)i∈I
= 0 in HI,W

∣∣
x
.
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Note that the open subscheme

(2.11)
⋂

(αi)i∈I∈
∏

i∈I{0,··· ,rkM−1}

(
∏
i∈I

Frobdiαi

{i} )−1(Ω1)

is dense in XI because Ω1 is dense. By Lemma 1.3.1, there exists (Ni)i∈I ∈ NI

such that
∏

i∈I Frob
diNi

{i} (x) is in (2.11). We deduce∏
i∈I

Frob
di(Ni+αi)
{i} (x) ∈ Ω1 for all (αi)i∈I ∈

∏
i∈I

{0, · · · , rkM − 1}.

By (2), we deduce that

(2.12) a(Ni+αi)i∈I
= 0 for all (αi)i∈I ∈

∏
i∈I

{0, · · · , rkM − 1}.

By (1), for every j ∈ I and (ni)i∈I ∈ NI ,

(2.13) a(ni+rkMδi,j)i∈I
=

rkM−1∑
α=0

(−1)α+rkMS∧rkM−α M,yj
(a(ni+αδi,j)i∈I

)

Using (2.12) and (2.13), by induction we deduce that

a(ni)i∈I
= 0 for all (ni)i∈I ∈ NI such that ni ≥ Ni, ∀i ∈ I

Thus for n ≥ Ni for all i ∈ I, we have a(nd/di)i∈I
= 0. Then (2.9) implies

a(0)i∈I
= 0. This proves the injectivity of sp∗x.

Surjectivity: To prove that sp∗x is surjective, it is enough to prove that for
every µ, we have Mµ ⊂ Im(sp∗x).

As in the proof of Proposition 2.1.6, we define M̃µ to be the image of

(2.14)
∑

(ni)i∈I∈NI

(⊗i∈IHG,vi) ·
(∏

i∈I

F ni

{i}((
∏
i∈I

Frobni

{i})
∗H

≤µ
I,W )

)∣∣∣∣∣
ηI

in HI,W

∣∣
ηI

. It is a subsheaf of HI,W

∣∣
ηI

. We have

M̃µ

∣∣∣
ηI

= Mµ,

where Mµ is constructed in the proof of Proposition 2.1.6. Recall that the proof
of Proposition 2.1.6 implies that there exists µ0 large enough such that

(2.15) Mµ ⊂ ⊗i∈IHG,vi ·H
≤µ0

I,W

∣∣∣
ηI
.

Let Ω0 be a dense open subscheme of (X ∖N)I such that H≤µ0

I,W

∣∣∣
Ω0

is lisse. By

Lemma 1.3.1, the set {(
∏

i∈I Frob
mi

{i})(x), (mi)i∈I ∈ NI} is Zariski dense in XI .
We deduce that there exists (ni)i∈I ∈ NI , such that (

∏
i∈I Frob

ni

{i})(x) ∈ Ω0.
Let the specialization map

(
∏
i∈I

Frobni

{i})spx : (
∏
i∈I

Frobni

{i})(ηI) → (
∏
i∈I

Frobni

{i})(x)
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be the image of spx by
∏

i∈I Frob
ni

{i}. We have a commutative diagram

(2.16) H
≤µ0

I,W

∣∣∣
(
∏

i∈I Frob
ni
{i})(x)

((
∏

i∈I Frob
ni
{i})spx)

∗

≃
//

��

H
≤µ0

I,W

∣∣∣
(
∏

i∈I Frob
ni
{i})(ηI)

��

HI,W

∣∣
(
∏

i∈I Frob
ni
{i})(x)

((
∏

i∈I Frob
ni
{i})spx)

∗

// HI,W

∣∣
(
∏

i∈I Frob
ni
{i})(ηI)

The upper horizontal morphism is an isomorphism because H
≤µ0

I,W

∣∣∣
Ω0

is lisse.
Since the action of the Hecke algebra is given by morphisms of sheaves, it com-

mutes with ((
∏

i∈I Frob
ni

{i})spx)
∗. We deduce that ⊗i∈IHG,vi ·H

≤µ0

I,W

∣∣∣
(
∏

i∈I Frob
ni
{i})(ηI)

(view as image in HI,W

∣∣
(
∏

i∈I Frob
ni
{i})(ηI)

) is in the image of ((
∏

i∈I Frob
ni

{i})spx)
∗.

Choose an isomorphism (not canonical) ηI ≃ (
∏

i∈I Frob
ni

{i})(ηI), we deduce
from (2.15) that

(2.17) M̃µ

∣∣∣
(
∏

i∈I Frob
ni
{i})(ηI)

⊂ ⊗i∈IHG,vi ·H
≤µ0

I,W

∣∣∣
(
∏

i∈I Frob
ni
{i})(ηI)

.

So M̃µ

∣∣∣
(
∏

i∈I Frob
ni
{i})(ηI)

is in the image of ((
∏

i∈I Frob
ni

{i})spx)
∗.

As in the proof of [Laf18] Proposition 8.31. we have a commutative diagram
(2.18)

HI,W

∣∣
(
∏

Frob
ni
{i})(x)

((
∏

i∈I Frob
ni
{i})spx)

∗

//

∏
i∈I F

ni
{i}≃

��

HI,W

∣∣
(
∏

Frob
ni
{i})(ηI)∏

i∈I F
ni
{i}≃

��

M̃µ

∣∣∣
(
∏

Frob
ni
{i})(ηI)

_?
oo

≃
��

HI,W

∣∣
x

sp∗x // HI,W

∣∣
ηI

M̃µ

∣∣∣
ηI

_?
oo

We deduce that M̃µ

∣∣∣
ηI

is in the image of sp∗x.

□

Proposition 2.3.3. HI,W

∣∣
(η)I

is a constant sheaf over (η)I .

Proof. (1) On the one hand, by Proposition 2.2.1, the action of
KerΨ = Ker(FWeil(ηI , ηI) → Weil(η, η)I) on HI,W

∣∣
ηI

is trivial.
(2) On the other hand, Proposition 2.3.1 says that HI,W

∣∣
(η)I

is ind-lisse over
(η)I .

A similar argument as in 1.3.3 implies that the action of π1((η)I , ηI) on HI,W

∣∣
ηI

is trivial. We deduce the result. □

2.4. Constancy over (η)I1 ×Fq
u. To prove the smoothness result in the next

section, we need to prove Proposition 2.4.5. When I2 is empty, we recover Propo-
sition 2.3.3.
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2.4.1. Let I be a disjoint union I1 ⊔ I2. Let u be a closed point of (X ∖N)I2 and
u a geometric point over u.

Let F be an ind-constructible Λ-sheaf over (η)I1 ×Fq u, equipped with an
action of the partial Frobenius morphisms, i.e. for every i ∈ I1, an isomor-
phism F{i} : Frob∗

{i} F
∼→ F and an isomorphism FI2 : Frob∗

I2
F

∼→ F, commut-
ing with each other and whose composition is the total Frobenius isomorphism
Frob∗ F

∼→ F over (η)I1 ×Fq u. Then the fiber F
∣∣
ηI1×Fqu

is equipped with an action

of FWeil(ηI1 , ηI1).
In particuler, the fiber of the cohomology sheaf HI,W

∣∣
ηI1×Fqu

is equipped with

a continuous action of FWeil(ηI1 , ηI1).

Proposition 2.4.2. HI,W

∣∣
ηI1×Fqu

is an increasing union of sub Λ-modules M

which are stable under the action of FWeil(ηI1 , ηI1), and for which there exists a
family (vi)i∈I of closed points in X ∖N (depending on M) such that M is stable
under the action of ⊗i∈IHG,vi and is of finite type as module over ⊗i∈IHG,vi.

Proof. Similar to Proposition 2.1.6. □

Proposition 2.4.3. The action of FWeil(ηI1 , ηI1) on HI,W

∣∣
ηI1×Fqu

factors through

Weil(η, η)I1.

Proof. Similar to Proposition 2.2.1. □

Proposition 2.4.4. HI,W

∣∣
(η)I1×Fqu

is ind-lisse over (η)I1 ×Fq
u.

Proof. Similar to Proposition 2.3.1. □

Proposition 2.4.5. HI,W

∣∣
(η)I1×Fqu

is constant over (η)I1 ×Fq
u.

Proof. Similar to Proposition 2.3.3. □

2.4.6. Let s be a closed point of X ∖N and s a geometric point over s. Let

(s)I2 := s×Fq
· · · ×Fq

s.

Then (s)I2 is a special case of u, for u = ∆(s), where ∆ : X ↪→ XI2 is the diagonal
inclusion. By Proposition 2.4.5, HI,W

∣∣
(η)I1×Fq (s)

I2
is constant over (η)I1 ×Fq

(s)I2 .

3. Smoothness of the cohomology sheaves over (X ∖N)I

The goal of this section is to prove Theorem 3.2.3 and Theorem 3.3.1. We refer
to [Xue22] for the case when I is a singleton for illustration (in this case we only
need to consider S a henselian trait, i.e. spectrum of a henselian DVR). The
general case that we prove in this section is similar.

3.1. Some preparations.
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3.1.1. Let S be a local henselian ring over a perfect field k (not necessarily of
dimension one). Let s = Spec k be the closed point and δ = SpecK the generic
point. Fix an algebraic closure K of K. We denote by δ = SpecK. It will be
enough for us to consider only the case where k is separably closed, i.e. we assume
k = k.

3.1.2. Let I be a finite set. Let (xi)i∈I be a family of geometric points of S such
that xi ∈ {s, δ}. We denote by ×i∈Ixi the fiber product over Spec k. As in 1.1.5,
×i∈Ixi is an integral scheme over Spec k.

Definition 3.1.3. Let G be an ind-constructible Λ-sheaf over SI (product of I-
copies of S over k). We say that G is a pseudo-product 2 if for any family (xi)i∈I
of geometric points of S such that xi ∈ {s, δ}, the restriction G

∣∣
×i∈Ixi

is a constant
sheaf over ×i∈Ixi.

Notation 3.1.4. For pseudo-product sheaf G, we denote

G
∣∣
×i∈Ixi

:= Γ(×i∈Ixi,G).

Example 3.1.5. If G = ⊠i∈IFi where every Fi is an ind-constructible Λ-sheaf
over S, then G is a pseudo-product.

Example 3.1.6. For any geometric point v of X ∖ N , let S = (X ∖ N)(v) be
the strict henselization of X ∖N at v. Let s = s = v and δ = η. Then by 2.4.6,
HI,W

∣∣
SI is a pseudo-product.

3.1.7. Our choice of δ → S is a specialization map sp : δ → s.
Let G be an ind-constructible Λ-sheaf over S, then sp : δ → s induces a

morphism (by restriction because G
∣∣
s
= Γ(S,G))

ϕ0,1 : G
∣∣
s
→ G

∣∣
δ
.

3.1.8. Let S+ be the normalization of δ in S. Then S+ is still a local henselian
ring, with closed point s = s and generic point δ. Let G be a pseudo-product
sheaf over SI . It is still a pseudo-product sheaf over (S+)I .

3.1.9. Let u be a geometric point over some ×i∈Ixi in (S+)I and v a geometric
point over some other ×i∈Ixi

′ in (S+)I , with xi, xi′ ∈ {s, δ}. If u is a specialization
of v (i.e. there exists a specialization map v → u, i.e. a morphism v → (S+)I(u)),
then we will construct a canonical morphism (for the moment it depends on v
and u, but does not depend on the choice of specialization map)

(3.1) ϕu,v : G
∣∣
×i∈Ixi

→ G
∣∣
×i∈Ixi

′ .

Here is the construction: denote by v the image of v in (S+)I . Note that ×i∈Ixi
is a subscheme of (S+)I , thus v is a point over ×i∈Ixi.

2This is a condition, not a structure. I do not know if this condition is equivalent to being
in the essential image of (Shv(S))⊠I .
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For any specialization map a : v → u, it induces a morphism a∗ : G
∣∣
u
→ G

∣∣
v
.

The group Gal(v/v) acts transitively on the set of specialization maps {v → u}
and acts on the set of induced morphisms G

∣∣
u
→ G

∣∣
v

by acting on G
∣∣
v
.

Since G is a pseudo-product, it is constant over ×i∈Ixi, so is constant over v.
The action of Gal(v/v) on G

∣∣
v

is trivial. Thus the morphism G
∣∣
u
→ G

∣∣
v

does
not depend on the choice of specialization map. Moreover, since G is a pseudo-
product, we can identify G

∣∣
u
= G

∣∣
×i∈Ixi

and G
∣∣
v
= G

∣∣
×i∈Ixi

′ . We obtain morphism
(3.1).

When I is a singleton, we recover 3.1.7.

Example 3.1.10. Let I = {1, 2}, x1×x2 = δ×s, x1′×x2′ = δ×δ. Let u = δ×s
and v = δ2, where δ2 is the generic point of S × S. Then (3.1) is a morphism
G
∣∣
δ×s

→ G
∣∣
δ×δ

.

3.1.11. The canonical morphism (3.1) is compatible with the composition. Let w
be a geometric point over some ×i∈Ixi

′′ in (S+)I , with xi′′ ∈ {s, δ}. Suppose that
u is a specialization of v and v is a specialization of w. Then we have

ϕv,w ◦ ϕu,v = ϕu,w

To see this, we choose specialization maps such that the following diagram of
specialization maps commutes (it is enough to choose w → u to be the composi-
tion of w → v and v → u):

w //

��

v

��
u

It induces a commutative diagram

(3.2) G
∣∣
w

G
∣∣
v

oo

G
∣∣
u

`` OO

By 3.1.9, these morphisms do not depend on the choice of specialization maps. We
identify (3.2) with the following commutative diagram of canonical morphisms:

G
∣∣
×xi

′′ G
∣∣
×xi

′

ϕv,woo

G
∣∣
×xi

ϕu,w

ff

ϕu,v

OO

3.1.12. Now we prove that (3.1) constructed in 3.1.9 does not depend on u and v.
Let u′ be a geometric generic point of ×i∈Ixi and v′ be a geometric generic point
of ×i∈Ixi

′. Then there exists specialization maps u′ → u and v′ → v. Since there
exists a specialization map v → u, there exists a specialization map v′ → u′.
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By 3.1.11, we have

ψv,v′ ◦ ψu,v = ψu,v′ = ψu′,v′ ◦ ψu,u′

Since G is constant over ×i∈Ixi (resp. ×i∈Ixi
′), we have ϕu,u′ = Id (resp. ϕv,v′ =

Id. We deduce ϕu,v = ϕu′,v′ .
So ϕu,v constructed in 3.1.9 does not depend on the choice of geometric points

u and v. We obtain a canonical morphism

ϕ×xi,×xi
′ : G

∣∣
×i∈Ixi

→ G
∣∣
×i∈Ixi

′

Construction 3.1.13. Let G be an ind-constructible Λ-sheaf over S×S which is
a pseudo-product. Applying 3.1.9-3.1.12 to S+ × S+, we construct the following
canonical morphisms which form a commutative diagram:

(3.3) G
∣∣
δ×s

ϕ10,11 // G
∣∣
δ×δ

G
∣∣
s×s

ϕ00,01 //

ϕ00,10

OO
ϕ00,11

88

G
∣∣
s×δ

ϕ01,11

OO

Example 3.1.14. In Construction 3.1.13, when G = F1 ⊠ F2, diagram (3.3)
coincides with

F2

∣∣
δ
⊗ F1

∣∣
s

Id⊗ϕ0,1 // F1

∣∣
δ
⊗ F2

∣∣
δ

F1

∣∣
s
⊗ F2

∣∣
s

Id⊗ϕ0,1 //

ϕ0,1⊗Id

OO

ϕ0,1⊗ϕ0,1

66

F2

∣∣
s
⊗ F1

∣∣
δ

ϕ0,1⊗Id

OO

Construction 3.1.15. Let G be an ind-constructible Λ-sheaf over S × S × S
which is a pseudo-product. Applying 3.1.9-3.1.12 to S+ × S+ × S+, we construct
the following canonical morphisms which form a commutative diagram:

(3.4) G
∣∣
δ×s×s

ϕ100,110 //

ϕ100,101

xx

G
∣∣
δ×δ×s

ϕ110,111xx

G
∣∣
δ×s×δ

ϕ101,111 // G
∣∣
δ×δ×δ

G
∣∣
s×s×s

ϕ000,010 //

ϕ000,100

OO

ϕ000,001

xx

G
∣∣
s×δ×s

ϕ010,110

OO

ϕ010,011xx

G
∣∣
s×s×δ

ϕ001,101

OO

ϕ001,011 // G
∣∣
s×δ×δ

ϕ011,111

OO

3.1.16. The morphism induced by a specialization map is functorial for morphism
of sheaves G1 → G2. We deduce that the canonical morphism constructed in 3.1.9
is functorial for morphism of sheaves. In particular, Constructions 3.1.13 and
3.1.15 are functorial for morphism of sheaves.
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3.1.17. Let G be a pseudo-product sheaf over S × S × S. Consider the partial
diagonal morphism

(3.5) S × S
(∆{1,2}, Id)−−−−−−→ S × S × S.

The restriction G
∣∣
∆{1,2}(S)×S

is a pseudo-product sheaf over S×S. Then (3.3) for
the sheaf G

∣∣
∆{1,2}(S)×S

coincides with the following commutative sub-diagram of
(3.4):

(3.6) G
∣∣
δ×δ×s

ϕ10,11=ϕ110,111 // G
∣∣
δ×δ×δ

G
∣∣
s×s×s

ϕ00,01=ϕ000,001 //

ϕ00,10=ϕ000,110

OO

G
∣∣
s×s×δ

ϕ01,11=ϕ001,111

OO

In fact, this is because by 3.1.12, to construct the morphisms in (3.6), we can
choose geometric points over the subschemes ∆{1,2}(s) × s (resp. ∆{1,2}(δ) × s,
∆{1,2}(s)× δ, ∆{1,2}(δ)× δ) of s× s× s (resp. δ × δ × s, s× s× δ, δ × δ × δ).

Similarly, consider the partial diagonal morphism

(3.7) S × S
(Id,∆{2,3})−−−−−−→ S × S × S.

The restriction G
∣∣
S×∆{2,3}(S)

is a pseudo-product sheaf over S×S. Then (3.3) for
the sheaf G

∣∣
S×∆{2,3}(S)

coincides with the following commutative sub-diagram of
(3.4):

G
∣∣
δ×s×s

ϕ10,11=ϕ100,111 // G
∣∣
δ×δ×δ

G
∣∣
s×s×s

ϕ00,01=ϕ000,011 //

ϕ00,10=ϕ000,100

OO

G
∣∣
s×δ×δ

ϕ01,11=ϕ011,111

OO

3.2. Smoothness of HI,W . Let I be a finite set and W ∈ RepΛ(Ĝ
I).

3.2.1. Let I0 = I1 = I2 = I3 = I. We denote by

∆I1⊔I2⊔I3 : (X ∖N)I → (X ∖N)I1 × (X ∖N)I2 × (X ∖N)I3 ,

(xi)i∈I 7→
(
(xi)i∈I1 , (xi)i∈I2 , (xi)i∈I3

)
∆I1⊔I2 : (X ∖N)I → (X ∖N)I1 × (X ∖N)I2 , (xi)i∈I 7→

(
(xi)i∈I1 , (xi)i∈I2

)
∆I2⊔I3 : (X ∖N)I → (X ∖N)I2 × (X ∖N)I3 , (xi)i∈I 7→

(
(xi)i∈I2 , (xi)i∈I3

)
We denote by 1 the trivial representation of ĜI . Let unit : 1 → W ∗ ⊗W be

the canonical morphism. As in [Laf18] Section 5, we define the creation operator
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C♯ := C
♯,I2⊔I3
unit (creating legs I2⊔I3) to be the composition of morphisms of sheaves

over (X ∖N)I × (X ∖N)I :

(3.8)
HI1,W ⊠ Λ(X∖N)I

∼→ HI1⊔I0,W⊠1
H(IdW ⊠unit)−−−−−−−−→ HI1⊔I0,W⊠(W ∗⊗W )

χ−1
I2⊔I3−−−−→
∼

HI1⊔I2⊔I3,W⊠W ∗⊠W

∣∣
(X∖N)I1×∆I2⊔I3

(
(X∖N)I

)
where H(IdW ⊠ unit) is by the functoriality associated to IdW ⊠ unit : W ⊠ 1 →
W ⊠ (W ∗ ⊗W ), χI2⊔I3 is the fusion isomorphism ([Laf18] Proposition 4.12) asso-
ciated to the map

I1 ⊔ I2 ⊔ I3 ↠ I1 ⊔ I0
sending I1 to I1 by identity, I2 to I0 by identity and I3 to I0 by identity.

Let ev : W ⊗W ∗ → 1 be the evaluation map. We define the annihilation oper-
ator C♭ := C♭,I1⊔I2

ev (annihilating legs I1 ⊔ I2) to be the composition of morphisms
of sheaves over (X ∖N)I × (X ∖N)I :

(3.9)
HI1⊔I2⊔I3,W⊠W ∗⊠W

∣∣
∆I1⊔I2

(
(X∖N)I

)
×(X∖N)I3

χI1⊔I2−−−−→
∼

HI0⊔I3,(W⊗W ∗)⊠W

H(ev⊠ IdW )−−−−−−−→ HI0⊔I3,1⊠W
∼→ Λ(X∖N)I ⊠HI3,W

where H(ev⊠ IdW ) is by the functoriality associated to ev⊠ IdW : (W ⊗W ∗)⊠
W → 1⊠W , χI1⊔I2 is the fusion isomorphism associated to the map

I1 ⊔ I2 ⊔ I3 ↠ I0 ⊔ I3
sending I1 to I0 by identity, I2 to I0 by identity and I3 to I3 by identity.

Lemma 3.2.2. ("Zorro" lemma, [Laf18] (6.18)) The composition of morphisms
of sheaves over (X ∖N)I :

(3.10) HI1,W
C♯

−→ HI1⊔I2⊔I3,W⊠W ∗⊠W

∣∣
∆I1⊔I2⊔I3

(
(X∖N)I

) C♭

−→ HI3,W

is the identity.

Proof. By the fusion property of Satake sheaves, we have

HI1⊔I2⊔I3,W⊠W ∗⊠W

∣∣
∆I1⊔I2⊔I3 ((X∖N)I)

≃ HI,W⊗W ∗⊗W .

The composition of morphisms of vector spaces

W
(Id,unit)−−−−→ W ⊗W ∗ ⊗W

(ev,Id)−−−→ W

is identity. The lemma follows from the functoriality on W . □

Theorem 3.2.3. The ind-constructible Λ-sheaf HI,W is ind-lisse over (X∖N)I .

Proof. By Lemma A.0.3, it is enough to prove that for any geometric point x of
(X ∖N)I and any specialization map spx : ηI → x, the induced morphism

(3.11) sp∗x : HI,W

∣∣
x
→ HI,W

∣∣
ηI

is an isomorphism.
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Let γ be the composition of the following morphisms:

(3.12)

HI1,W

∣∣
ηI
⊗ Λ

∣∣
x

C♯

−→ HI1⊔I2⊔I3,W⊠W ∗⊠W

∣∣
ηI×∆I2⊔I3 (x)

(α) = HI1⊔I2⊔I3,W⊠W ∗⊠W

∣∣
ηI×x×x

ϕ100,110−−−−→ HI1⊔I2⊔I3,W⊠W ∗⊠W

∣∣
ηI×ηI×x

(β) = HI1⊔I2⊔I3,W⊠W ∗⊠W

∣∣
∆I1⊔I2 (ηI)×x

C♭

−→ Λ
∣∣
ηI
⊗HI3,W

∣∣
x
.

Here is the construction of the morphism ϕ100,110: let S = ((X ∖ N)I)(x) be the
strict henselization of (X∖N)I at x, its closed point is x. The specialization map
spx : ηI → x is a morphism ηI → S. By Proposition 2.4.5, HI1⊔I2⊔I3,W⊠W ∗⊠W

is constant over (η)I1⊔I2⊔I3 (resp. (η)I1⊔I2 × x, (η)I1⊔I3 × x, (η)I2⊔I3 × x), thus
constant over ηI × ηI × ηI (resp. ηI × ηI × x, ηI × x × ηI , x × ηI × ηI). So
HI1⊔I2⊔I3,W⊠W ∗⊠W is a pseudo-product over S × S × S. We apply Construction
3.1.15 to G = HI1⊔I2⊔I3,W⊠W ∗⊠W , s = s = x, δ = ηI , δ the image of ηI in S.

The equality (α) is evident and the equality (β) is because HI1⊔I2⊔I3,W⊠W ∗⊠W

is constant over ηI × ηI × x.
By Lemma 3.2.4 and Lemma 3.2.5 below, γ is the inverse of sp∗. □

Lemma 3.2.4. The composition γ ◦ sp∗ is the identity.

Proof. The following diagram is commutative:
(3.13)

HI1,W

∣∣
x
⊗ Λ

∣∣
x

sp∗ //

C♯

��

HI1,W

∣∣
ηI
⊗ Λ

∣∣
x

C♯

��

HI1⊔I2⊔I3,W⊠W ∗⊠W

∣∣
x×∆I2⊔I3 (x)

ϕ00,10 //

=

��

HI1⊔I2⊔I3,W⊠W ∗⊠W

∣∣
ηI×∆I2⊔I3 (x)

=

��

HI1⊔I2⊔I3,W⊠W ∗⊠W

∣∣
x×x×x

ϕ000,110 ,,

ϕ000,100 //

=

��

HI1⊔I2⊔I3,W⊠W ∗⊠W

∣∣
ηI×x×x

ϕ100,110

��

HI1⊔I2⊔I3,W⊠W ∗⊠W

∣∣
ηI×ηI×x

=

��

HI1⊔I2⊔I3,W⊠W ∗⊠W

∣∣
∆I1⊔I2 (x)×x

C♭

��

ϕ00,10 // HI1⊔I2⊔I3,W⊠W ∗⊠W

∣∣
∆I1⊔I2 (ηI)×x

C♭

��

Λ
∣∣
x
⊗HI3,W

∣∣
x

Id // Λ
∣∣
ηI
⊗HI3,W

∣∣
x

The first square is commutative because Construction 3.1.13 commutes with the
morphism of sheaves C♯. The second square is commutative because we identify
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ϕ00,10 with ϕ000,100 as in 3.1.17 for G = HI1⊔I2⊔I3,W⊠W ∗⊠W and ∆I2⊔I3 . The middle
triangle is commutative by Construction 3.1.15. The next square is commutative
because we identify ϕ000,110 with ϕ00,10 as in 3.1.17 for G = HI1⊔I2⊔I3,W⊠W ∗⊠W and
∆I1⊔I2 . The last square is commutative because Construction 3.1.13 commutes
with the morphism of sheaves C♭.

The composition of right vertical morphisms is γ. By Lemma 3.2.2, the com-
position of the left vertical morphisms is the identity. Since Λ is a constant sheaf,
the lower horizontal line is identity. So γ ◦ sp∗ is the identity. □

Lemma 3.2.5. The composition sp∗ ◦ γ is the identity.

Proof. The following diagram is commutative
(3.14)

HI1,W

∣∣
ηI
⊗ Λ

∣∣
x

Id //

C♯

��

HI1,W

∣∣
ηI
⊗ Λ

∣∣
ηI

C♯

��

HI1⊔I2⊔I3,W⊠W ∗⊠W

∣∣
ηI×∆I2⊔I3 (x)

ϕ10,11 //

=

��

HI1⊔I2⊔I3,W⊠W ∗⊠W

∣∣
ηI×∆I2⊔I3 (ηI)

=

��

HI1⊔I2⊔I3,W⊠W ∗⊠W

∣∣
ηI×x×x

ϕ100,111 //

ϕ100,110

��

HI1⊔I2⊔I3,W⊠W ∗⊠W

∣∣
ηI×ηI×ηI

=

��

HI1⊔I2⊔I3,W⊠W ∗⊠W

∣∣
ηI×ηI×x

ϕ110,111

22

=

��

HI1⊔I2⊔I3,W⊠W ∗⊠W

∣∣
∆I1⊔I2 (ηI)×x

ϕ10,11 //

C♭

��

HI1⊔I2⊔I3,W⊠W ∗⊠W

∣∣
∆I1⊔I2 (ηI)×ηI

C♭

��

Λ
∣∣
ηI
⊗HI3,W

∣∣
x

sp∗ // Λ
∣∣
ηI
⊗HI3,W

∣∣
ηI

The first square is commutative because Construction 3.1.13 commutes with the
morphism of sheaves C♯. The second square is commutative because we identify
ϕ10,11 with ϕ100,111 as in 3.1.17 for G = HI1⊔I2⊔I3,W⊠W ∗⊠W and ∆I2⊔I3 . The middle
triangle is commutative by Construction 3.1.15. The next square is commutative
because we identify ϕ110,111 with ϕ10,11 as in 3.1.17 for G = HI1⊔I2⊔I3,W⊠W ∗⊠W and
∆I1⊔I2 . The last square is commutative because Construction 3.1.13 commutes
with the morphism of sheaves C♭.
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Since HI1⊔I2⊔I3,W⊠W ∗⊠W

∣∣
ηI×ηI×ηI

is constant, we have canonical isomorphisms:

HI1⊔I2⊔I3,W⊠W ∗⊠W

∣∣
ηI×∆I2⊔I3 (ηI)

=
tt

=

**

HI1⊔I2⊔I3,W⊠W ∗⊠W

∣∣
ηI×ηI×ηI

=

**

HI1⊔I2⊔I3,W⊠W ∗⊠W

∣∣
∆I1⊔I2⊔I3 (ηI)

=
tt

HI1⊔I2⊔I3,W⊠W ∗⊠W

∣∣
∆I1⊔I2 (ηI)×ηI

Using this, we identify the composition of right vertical morphisms with

HI1,W

∣∣
ηI
⊗ Λ

∣∣
ηI

C♯

−→ HI1⊔I2⊔I3,W⊠W ∗⊠W

∣∣
∆I1⊔I2⊔I3 (ηI)

C♭

−→ Λ
∣∣
ηI
⊗HI3,W

∣∣
ηI
.

By Lemma 3.2.2, the composition is the identity.
The composition of left vertical morphisms is γ. Since Λ is a constant sheaf,

the upper horizontal line is identity. So sp∗ ◦ γ is the identity. □

Corollary 3.2.6. (of Theorem 3.2.3) The action of Weil(η, η)I on HI,W

∣∣
ηI

(de-
fined in Proposition 2.2.1) factors through Weil(X ∖N, η)I .

Proof. Let K := Ker(Weil(η, η) → Weil(X ∖ N, η)). We want to prove that the
action ofKI on HI,W

∣∣
ηI

is trivial. Let x be a closed point ofX∖N . Since for every
i ∈ I, the restriction HI,W

∣∣
(X∖N)×(x)I−{i} is ind-lisse, we deduce that the action

of K (the i-th factor in KI) on HI,W

∣∣
η×(x)I−{i} is trivial. Since HI,W is ind-lisse

over (X ∖ N)I , we have an equivariant isomorphism HI,W

∣∣
η×(x)I−{i}

∼→ HI,W

∣∣
ηI

.
Considering this for every i ∈ I, we deduce that the action of KI on HI,W

∣∣
ηI

is
trivial. □

Remark 3.2.7. For any geometric point v of X ∖N , let S = (X ∖N)(v) be the
strict henselization of X ∖N at v and let S+ be the normalization of η in S. By
Theorem 3.2.3, HI,W is ind-lisse over (X ∖N)I , so its pullback is ind-lisse over
(S+)I . By Proposition 2.3.3, HI,W

∣∣
(η)I

is a constant sheaf over (η)I . Since (η)I

is open in (S+)I , we deduce that HI,W is constant over (S+)I .

3.3. Smoothness of H
≤µ
I,W . The statement as well as the proof of the following

theorem are due to Dennis Gaitsgory and Yakov Varshavsky. (Private communi-
cation.)

In this subsection, we revert to the original notation in the introduction and
denote by H

j
G,N,I,W the degree j cohomoplogy sheaf and HG,N,I,W the complex of

cohomoplogy sheaves.

Theorem 3.3.1. For µ ∈ Λ̂+
Gad sufficiently regular (i.e. far away from every wall

in the Weyl chamber),
(1) H

j, ≤µ
G,N,I,W is lisse over (X ∖N)I .

(2) the morphism H
j, ≤µ
G,N,I,W → H

j
G,N,I,W is injective.
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3.3.2. The proof uses Theorem 3.2.3 and the constant term morphisms con-
structed in [Xue20a] (for Λ = E) and [Xue20c] (for Λ = OE, kE). Let’s briefly
recall:

Let P be a parabolic subgroup of G and M be its Levi quotient. For W ∈
RepΛ(Ĝ

I), we can view W as a representation of M̂ I via the canonical inclusion
M̂ I ↪→ ĜI . Then we define the complex of cohomology sheaves of stack of M -
shtukas H′

M,N,I,W .
In [Xue20a, Section 4.1], for any µ ∈ Λ̂+,Q

Gad , we defined a set SM(µ) := {λ ∈
Λ̂+,Q

Gad | µ − λ is a linear combination of simple coroots of M with coefficients in
Q≥0 modulo Λ̂Q

ZG
}. We define

Cht
SM (µ)
G,N,I,W =

⋃
λ∈SM (µ)

Cht=λ
G,N,I,W

where Cht=λ
G,N,I,W is the inverse image of Bun=λ

G (defined in loc.cit. Definition
4.1.3) by ChtG,N,I,W → BunG, the morphism which sending a G-shtuka to the
corresponding G-bundle. We define

H
SM (µ)
G,N,I,W := p!(FG,N,I,W

∣∣
Cht

SM (µ)

G,N,I,W /Ξ
).

Similarly we define Cht
′ SM (µ)
M,N,I,W and H

′ SM (µ)
M,N,I,W .

Then loc.cit. Proposition 4.6.4 (the construction is geometric, so works for any
coefficients) says that for µ ∈ Λ̂+

Gad sufficiently regular, the truncated constant
term morphism over (X ∖N)I :

(3.15) C
P,SM (µ)
G : H

SM (µ)
G,N,I,W → H

′ SM (µ)
M,N,I,W

is an isomorphism.

Now we are ready to give the proof of Theorem 3.3.1. We say that a complex
is (ind-)lisse if every cohomology is (ind-)lisse.

Proof. In the proof, we denote HG := HG,N,I,W and HM := H′
M,N,I,W .

(1) We use an induction argument on the semisimple rank of G. When G is of
semisimple rank 0, i.e. G is a torus, there is only one element in Λ̂+

Gad , so only
one term in the inductive limit HG. It is constructible and by Theorem 3.2.3 it
is lisse.

Now we suppose that Theorem 3.3.1 (1) is true for every proper Levi subgroup
M . For any λ ∈ Λ̂+,Q

Gad , we have the following fact: H
SM (λ)
M equals to H≤λ′

M for
some dominant co-weight λ′ of M . (We refer to [Xue20a, Section 4.1 and the
proof of Lemma 5.3.4] for details.) For λ sufficiently regular, λ′ is also sufficiently
regular, by the induction hypothesis, H≤λ′

M is lisse over XI , so is H
SM (λ)
M . By

(3.15), HSM (λ)
G is also lisse over XI .

For any µ ∈ Λ̂+,Q
Gad , the open immersion Cht≤µ

G,I,W → ChtG,I,W induces a cone in
the derived category (∞-derived category of ind-constructible sheaves):

(3.16) H
≤µ
G → HG → HG/H

≤µ
G

+−→
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Let µ ∈ Λ̂+,Q
Gad be sufficiently regular. We construct a zigzag chain

µ = λ0 < λ1 < · · · < λi < · · ·
as in the proof of [Xue20a, Lemma 5.3.6] and [Xue20b, Proposition 2.2.4] (but in
the inverse sense). To construct the chain, for i ≥ 1, choose λi = λi−1 +

1
r
βi for

some simple coroot βi of G such that λi ∈ Λ̂+,Q
Gad is still sufficiently regular (here

we introduce r ∈ N only for technical reason. We fix r as in [Xue20a, 5.1.1]).
Take Mi to be the Levi subgroup whose simple coroots are the simple coroots of
G except βi. By definition we have

{λ ∈ Λ̂+,Q
Gad , λ ≤ λi} − {λ ∈ Λ̂+,Q

Gad , λ ≤ λi−1} = SMi
(λi).

An example of the chain is given in Example 3.3.3 below.
For every λi (i ≥ 1) in the chain we have a cone in the derived category

HG/H
≤λi

G → HG/H
≤λi−1

G → H≤λi

G /H
≤λi−1

G

+−→

and H≤λi

G /H
≤λi−1

G
∼= H

SMi
(λi)

G . In this way the quotient HG/H
≤µ
G has a filtration

with associated graded H
SMi

(λi)

G .
Since all λi are sufficiently regular, H

SMi
(λi)

G are lisse. Taking into account
Lemma A.0.3, we deduce that HG/H

≤µ
G is ind-lisse over XI .

By Theorem 3.2.3, HG is ind-lisse over XI . We deduce from (3.16) that H
≤µ
G

is lisse over XI . In particular, for any degree j ∈ Z, Hj,≤µ
G is lisse. □

(2) In [Xue20a, Proposition 5.1.5 (c)] and [Xue20c, Proposition 3.2.7 (c)], we
proved that for µ sufficiently regular, the restriction of the morphism H

j,≤µ
G → H

j
G

over ηI is injective (this is a consequence of the following fact, which is proved in
[Xue20a, Proposition 5.1.5 (b)] and [Xue20c, Proposition 3.2.7 (b)]: there exists
µ0 sufficiently regular, such that for any λ ≥ µ0 and λ sufficiently regular, the
morphism

Ker(Hj,≤µ0

G

CT−−→
∏
P⊊G

H ′j
M) → Ker(Hj,≤λ

G

CT−−→
∏
P⊊G

H ′j
M)

is surjective, where Hj
G = H

j
G

∣∣
ηI

, Hj
M = H

j
M

∣∣
ηI

and CT are the
constant term morphisms. Besides, for λ large enough, we have
Ker(Hj,≤µ0

G → Hj
G) = Ker(Hj,≤µ0

G → Hj,≤λ
G ). We deduce from these

two facts that for λ sufficiently regular, Hj,≤λ
G → Hj

G is injective). Since both
sheaves are (ind)-lisse, the morphism itself is injective. □

Example 3.3.3. (of the chain.) Let G = GL3. It has two simple coroots: α̂1,
α̂2. Let Mα̂1 = GL1 × GL2, whose simple coroots are the simple coroots of G
except α̂1, and Mα̂2 = GL2 × GL1, whose simple coroots are the simple coroots
of G except α̂2.

In the following picture we illustrate a chain µ = λ0 < λ1 < λ2 < λ3 · · · . In
this chain, λ1 = µ + 1

r
α̂2, i.e. using the notation in the proof of Theorem 3.3.1,

we take β1 = α̂2 and M1 =Mα̂2 . We have

{λ ∈ Λ̂+,Q
Gad , λ ≤ λ1} − {λ ∈ Λ̂+,Q

Gad , λ ≤ λ0} = SMα̂2
(λ1).
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Similarly λ2 = λ1 +
1
r
α̂2 (where β2 = α̂2 and M2 = Mα̂2). If we continue in the

direction of α̂2 we will be out of the zone "sufficiently regular", so we change to
the direction of α̂1 and let λ3 = λ2 +

1
r
α̂1 (where β3 = α̂1 and M3 =Mα̂1). Then

we continue...

Remark 3.3.4. We do not know a direct proof of Theorem 3.3.1 without using
Theorem 3.2.3.

Since we have proved Theorem 3.3.1, we can finally write HI,W as the inductive
limit of lisse sheaves H

≤µ
I,W .

4. The case of non necessarily split groups

Now let G be a geometrically connected smooth reductive group over F , i.e.
over the generic point η of X. As in [Laf18, Section 12], let U be the maximal
open subscheme of X such that G extends to a smooth reductive group scheme
over U . We choose a parahoric integral model of G at all points of X∖U . Gluing
these integral models over U and over the formal neighborhoods of the points of
X ∖ U , we obtain a smooth group scheme over X. We still denote it by G.

Let LG be the L-group over Λ.
We denote by N̂ = |N |∪(X∖U). We use the definition of cohomology sheaves

of stacks of shtukas in [Laf18, Section 12], where we use the geometric Satake
equivalence ([Zhu15] for Λ = E, [ALRR24] for Λ = E,OE, kE, the properties that
we needed are stated in [Laf18, Theoreme 12.16]). For any finite set I and any W
finite type Λ-linear representation of (LG)I we have the complex of cohomology
sheaves

HG,N,I,W := lim−→
µ

H
≤µ
G,N,I,W

over (X ∖ N̂)I , where the Harder-Narasimhan truncations are given in [Laf18,
Section 12].

It is equipped with an action of the partial Frobenius morphisms and an action
of the Hecke algebra.
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Sections 1-3 (except 3.3) still work if we replace everywhere (X ∖ N)I by
(X ∖ N̂)I and Ĝ by LG.

Remark 4.0.1. Theorem 3.3.1 should still hold, once we have the constant term
morphisms for general reductive groups. However, the constant term morphisms
are only written down for split groups for the moment. For non split groups, the
construction will need the generalization of the Harder-Narasimhan stratification
of [Sch15] to non split groups, which are not yet written down (we do not think
there are really difficulty).

Compare with the easy Harder-Narasimhan stratification given by GLn, the
Harder-Narasimhan stratification in [Sch15] is more canonical and really related
to parabolic induction. For Eichler-Shimura relation, the former one is enough.
But to construct the constant term morphisms, it would be better to use the latter
one.

Appendix A. A reminder on ind-lisse sheaves

A.0.1. We use [SGA4] VIII 7 for the definition of specialization maps.
Let Y be a normal irreducible noetherian scheme over Fq. By [SGA4] IX

Proposition 2.11, a constructible Λ-sheaf F over Y is lisse if and only if for any
geometric points x, y of Y and any specialization map sp : y → x, the induced
morphism

sp∗ : F
∣∣
x
→ F

∣∣
y

is an isomorphism.

A.0.2. Let H = lim−→λ∈Ω Fλ be an inductive limit of constructible Λ-sheaves over
a scheme Y , where Ω is a filtered set. We say that the ind-constructible Λ-sheaf
H is ind-lisse if we can write H as an inductive limit of lisse Λ-sheaves over Y ,
i.e. there exists a filtered set Ω′ and lisse Λ-sheaves Gλ′ for λ′ ∈ Ω′ such that
H ≃ lim−→λ′∈Ω′ Gλ′ .

Lemma A.0.3. Let Y be a normal irreducible noetherian scheme over Fq. An
ind-constructible Λ-sheaf H over Y is ind-lisse if and only if for any geometric
points x, y of Y and any specialization map sp : y → x, the induced morphism

sp∗ : H
∣∣
x
→ H

∣∣
y

is an isomorphism.

A.0.4. To prove Lemma A.0.3, we need some preparations. Let H = lim−→λ∈Ω Fλ

as above. For any λ ≤ µ in Ω, the kernel Ker(Fλ → Fµ) is a constructible
sub-Λ-sheaf of Fλ. For λ ≤ µ1 ≤ µ2, we have

Ker(Fλ → Fµ1) ⊂ Ker(Fλ → Fµ2) ⊂ Ker(Fλ → H) ⊂ Fλ.

Since Fλ is constructible and Y is noetherian, we deduce that there exists λ0, such
that for all µ ≥ λ0, we have Ker(Fλ → Fλ0) = Ker(Fλ → Fµ). (The argument is
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similar to the proof of Lemma 58.73.2 of [StacksProject].) So Im(Fλ → Fλ0)
∼→

Im(Fλ → Fµ). We denote by F̃λ := Im(Fλ → Fλ0). We have

(A.1) lim−→
λ∈Ω

Fλ ≃ lim−→
λ∈Ω

F̃λ.

For any λ1 ≤ λ2, F̃λ1 → F̃λ2 is injective.
Proof of Lemma A.0.3: One direction is obvious. Let’s prove the converse
direction. Let δ be the generic point of Y and δ a geometric point over δ. By the
hypothesis, for any geometric point x of Y and any specialization map sp : δ → x,
the induced morphism sp∗ : H

∣∣
x
→ H

∣∣
δ

is an isomorphism.
By A.0.4, we can suppose that for any λ1 ≤ λ2, Fλ1 → Fλ2 is injective. Since

every Fλ is a constructible Λ-sheaf over Y , there exists an open dense subscheme
Uλ of Y such that Fλ is lisse over Uλ. Let jλ : Uλ ↪→ Y be the embedding. Let

Gλ := (jλ)∗(Fλ

∣∣
Uλ
).

To prove that H is ind-lisse, it is enough to prove that
(1) every Gλ is a lisse Λ-sheaf over Y
(2) lim−→λ∈Ω Fλ ≃ lim−→λ∈Ω Gλ

Proof of (1): on the one hand, for every λ, by Lemma A.0.5 below, the mor-
phism sp∗ : Gλ

∣∣
x
→ Gλ

∣∣
δ

is injective.
On the other hand, for every λ, the adjunction morphism Id → (jλ)∗(jλ)

∗

induces a morphism

(A.2) Fλ → (jλ)∗(jλ)
∗Fλ = Gλ

Taking limit, we deduce a morphism φ : lim−→Fλ → lim−→Gλ. We have a commutative
diagram

(A.3) lim−→Fλ

∣∣
x

φ

��

sp∗

≃
// lim−→Fλ

∣∣
δ

≃φ

��

lim−→Gλ

∣∣
x

sp∗ // lim−→Gλ

∣∣
δ

By the hypothesis the upper line of (A.3) is an isomorphism. By the definition of
Gλ, the right vertical line of (A.3) is an isomorphism. Thus the lower line of (A.3)
is surjective. We want to show that for every λ, sp∗ : Gλ

∣∣
x
→ Gλ

∣∣
δ

is surjective.
Let a ∈ Gλ

∣∣
δ
, then there exists µ ≥ λ and b ∈ Gµ

∣∣
x

such that the image of b in
Gµ

∣∣
δ

coincides with the image of a. We identify Gλ

∣∣
δ
= Fλ

∣∣
δ
, Gµ

∣∣
δ
= Fµ

∣∣
δ
. Since

Y is normal irreducible, we identify Gλ

∣∣
x
= Γ(Y(x)× δ,Fλ), Gµ

∣∣
x
= Γ(Y(x)× δ,Fµ).

Since Fλ

∣∣
δ
⊂ Fµ

∣∣
δ
, if b ∈ Γ(Y(x) × δ,Fµ) and the restriction of b to Fµ

∣∣
δ

is in Fλ

∣∣
δ
,

then b is in Γ(Y(x) × δ,Fλ). We deduce that sp∗ : Gλ

∣∣
x
→ Gλ

∣∣
δ

is surjective.
By A.0.1, we deduce that Gλ is a lisse Λ-sheaf over Y .
Proof of (2): since every Gλ is lisse and for λ1 ≤ λ2, Gλ1

∣∣
δ
→ Gλ2

∣∣
δ

is injective,
we deduce that Gλ1 → Gλ2 is injective. Since for any λ, the morphism sp∗ :
Gλ

∣∣
x
→ Gλ

∣∣
δ

is injective, we deduce that the lower line of (A.3) is injective. So



SMOOTHNESS OF COHOMOLOGY SHEAVES OF STACKS OF SHTUKAS 29

the lower line of (A.3) is an isomorphism. Thus the left vertical line of (A.3) is
also an isomorphism, for any x.

By Lemma A.0.6 below, φ : lim−→Fλ → lim−→Gλ is an isomorphism. □

Lemma A.0.5. Let Y be a normal irreducible noetherian scheme over Fq and
j : U ↪→ Y be an open subscheme. Let F be a lisse Λ-sheaf over U . Let G = j∗F.
Then for any specialization map sp : y → x, the induced morphism sp∗ : G

∣∣
x
→

G
∣∣
y

is injective.

Proof. It is enough to prove for y = δ, a geometric generic point of Y . Denote by
Y(x) the strict henselization of Y at x. Note that G

∣∣
x
= Γ(Y(x), j∗F) = Γ(Y(x) ×Y

U,F) and G
∣∣
δ
= F

∣∣
δ
. By [SGA1] I Proposition 10.1, since Y is normal connected,

the fiber product Y(x) ×Y U is connected. Since F is lisse, for any V connected

etale over Y , Γ(V,F) = F
∣∣
δ

π1(V,δ). We deduce that the restriction

Γ(Y(x) ×Y U,F) → F
∣∣
δ

is injective. □

Lemma A.0.6. Let φ : lim−→Fλ → lim−→Gλ be a morphism of ind-constructible
sheaves over Y induced by Fλ → Gλ for every λ. If for every geometric point y,
φ
∣∣
y
: lim−→Fλ

∣∣
y
→ lim−→Gλ

∣∣
y

is an isomorphism, then φ is an isomorphism.

Proof. By A.0.4, we can suppose that all morphisms in lim−→Fλ and in lim−→Gλ are
injective. For any λ and any y, we have a commutative diagram

(A.4) Fλ

∣∣
y

��

� � // lim−→Fλ

∣∣
y

≃
��

Gλ

∣∣
y

� � // lim−→Gλ

∣∣
y

We deduce that Fλ

∣∣
y
→ Gλ

∣∣
y

is injective. Since this is true for any y, we deduce
that Fλ → Gλ is injective.

Now fix λ. For any µ ≥ λ, consider the subset of Y

Cµ := {y ∈ Y such that Gλ

∣∣
y
⊈ Im(Fµ

∣∣
y
→ Gµ

∣∣
y
)}

It is constructible. For any µ1 ≤ µ2, we have Cµ1 ⊃ Cµ2 . Since φ
∣∣
y

is surjective
for any y, we have ∩µCµ = ∅. We deduce that there exists µ0 (depending on λ),
such that for any µ ≥ µ0, we have Cµ = ∅. In particular, Gλ ⊂ Im(Fµ0 → Gµ0).
Thus for any λ, we have

Fλ ⊂ Gλ ⊂ Fµ0

This implies

(A.5) lim−→
λ∈Ω

Fλ ≃ lim−→
λ∈Ω

Gλ.

□
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