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Abstract. If X is a groupoid equipped with an action of a 2-group G then one has
a 2-groupoid X /G . We describe the fibers of the functor from X /G to the 1-groupoid
π0(X )/π0(G ). We also give an explicit model for X /G in a certain situation.

The work gives an abstract model for a certain 2-stack which provides a conjectural
description of the p-adic completion of the stack of n-truncated Barsotti-Tate groups.

If a 2-group G acts on a groupoid X then one can form the quotient 2-groupoid X /G .
This general construction is discussed in §1. In §2 we discuss the following special situation:
X is the underlying groupoid of a 2-group, and G acts on X by two-sided translations.

This elementary paper is motivated by the following: the sheafified version of the situation
of §2 occurs in the definition of the 2-stack from [D, §D.8.3], which provides a conjectural
description of the p-adic completion of the stack of n-truncated Barsotti-Tate groups and
its “Shimurian” analogs (see Appendix A for more details). The result of §2.4 of this paper
could be used to test Conjecture D.8.4 from [D].

I first constructed the 2-groupoid from §2.4 by trial and error (I was motivated by potential
applications to the Lau group scheme and the Lau gerbe, see §2.2.2). Then the idea of
treating this explicit construction as a special case of the 2-groupoid X /G was suggested to
me by D. Arinkin and N. Rozenblyum. I am very grateful to them.

1. The quotient 2-groupoid

1.1. The question.

1.1.1. 2-groupoids and 2-groups. Recall that a 2-groupoid is a 2-category in which all 1-
morphisms and 2-morphisms are invertible. A 2-group is a 2-groupoid with a single object;
equivalently, a 2-groupoid is a monoidal category in which all objects and morphisms are
invertible.

1.1.2. Quotient groupoids. If a group G acts on a set X then the quotient groupoid (or
groupoid quotient) X/G is defined as follows: the set of objects is X, a morphism x → x′

is an element g ∈ G such that gx = x′, and the composition of morphisms is given by
multiplication in G.
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1.1.3. Quotient 2-groupoids. More generally, if a 2-group G acts on a groupoid X then one
defines the quotient 2-groupoid X̃ = X /G as follows:

(i) Ob X̃ := ObX ;
(ii) for x1, x2 ∈ X let MorX̃ (x1, x2) be the following groupoid: its objects are pairs

(g, f), where g ∈ G , f ∈ Isom(x2, gx1),

and a morphism (g, f) → (g′, f ′) is a morphism g → g′ such that the corresponding morphism
gx1 → g′x1 equals f ′f−1;
(iii) the composition functor MorX̃ (x1, x2) × MorX̃ (x2, x3) → MorX̃ (x1, x3) comes from

the product in G .

1.1.4. The question. In the situation of §1.1.3, let X ′ := π0(X )/π0(G ), where π0 stands for
the set of isomorphism classes of objects and π0(X )/π0(G ) is the quotient 1-groupoid in the
sense of §1.1.2. We have a canonical functor

(1.1) X̃ = X /G → X ′.

It is easy to see that the functor (1.1) induces a surjection at the level of objects and at
the level of 1-morphisms. So the obstruction to it being an equivalence is formed by the
2-groups

(1.2) Ker(AutX̃ x→ AutX ′ x̄), x ∈ X ,

where x̄ ∈ π0(X ) is the image of x. Let us note that AutX ′ x̄ is just the stabilizer of x̄
in π0(G ); similarly, AutX̃ x is the “categorical stabilizer” of x in G .
The problem is to describe the 2-group (1.2). This will be done in Proposition 1.3.2 in

terms of a certain crossed module.

1.2. Recollections on crossed modules.

1.2.1. Crossed modules. Recall that a crossed module G• is a pair of groups G0, G−1 together
with an action of G0 on G−1 and a homomorphism d : G−1 → G0 satisfying certain identities.
The image of γ ∈ G−1 under the action of g ∈ G0 is denoted by gγ, and the identities are as
follows:

(1.3) d(gγ) = gd(γ)g−1, γ ∈ G−1, g ∈ G,

(1.4) d(γ)γ′ = γγ′γ−1 γ, γ′ ∈ G−1.

1.2.2. The 2-group corresponding to a crossed module. A crossed module G• gives rise to a
strict 2-group, which we denote by

(1.5) Cone(G−1 d−→ G0).

As a groupoid, this is the quotient of G0 by the action of G−1 given by (γ, g) 7→ d(γ) · g;
thus the set of objects is G0, and for g, g′ ∈ G0 one has

(1.6) Mor(g, g′) = {γ ∈ G−1 | d(γ)g = g′}.

The tensor product map Mor(g1, g
′
1)×Mor(g2, g

′
2) → Mor(g1g2, g

′
1g

′
2) is given by

(1.7) (γ1, γ2) 7→ γ1 · g1γ2.
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The assignment G• 7→ Cone(G−1 d−→ G0) gives an equivalence between the category of
crossed modules and that of strict 2-groups (e.g., see [L, Lemma 2.2]).

1.2.3. The abelian case. We say that a crossed module G• is abelian if G0, G−1 are abelian
and the action of G0 on G−1 is trivial. In this case the 2-group from §1.2.2 is the one
associated in [SGA4, Exposé XVIII, §1.4] to the complex

(1.8) 0 → G−1 d−→ G0 → 0,

so there is no conflict between understanding Cone(G−1 d−→ G0) as a 2-group and the usual
understanding as the complex (1.8).

1.3. Answering the question from §1.1.4.

1.3.1. A crossed module related to the G -action. We keep the notation of §1.1.3-1.1.4. Let
π1(G ) := Aut(1G ), where 1G is the unit object of the 2-group G ; it is well known that π1(G )
is abelian. The G -action induces for each x ∈ X a homomorphism

(1.9) ϕx : π1(G ) → AutX x,

which is functorial in x, i.e., for any ψ ∈ Mor(x, y) one has ψ ◦ ϕx = ϕy ◦ ψ. Applying this
for y = x, we see that Imϕx is contained in the center of AutX x. So we can regard (1.9)
as a crossed module in which the action of AutX x on π1(G ) is trivial. Let Cone(ϕx) be the
corresponding 2-group (see §1.2.2).

Proposition 1.3.2. There is a canonical equivalence of 2-groups

(1.10) Cone(π1(G )
ϕx−→ AutX )

∼−→ Ker(AutX̃ x→ AutX ′ x̄).

Proof. By §1.1.3, objects of AutX̃ x are pairs (g, f), where g ∈ G and f : x
∼−→ gx. A mor-

phism (g, f) → (g′, f ′) is a morphism g → g′ inducing f ′ ◦ f−1 : gx → g′x. The product in
AutX̃ x is

(g1, f1) · (g2, f2) = (g1g2, f̃2 ◦ f1),
where f̃2 : g1x→ g1g2x comes from f2 : x→ g2x.
The equivalence (1.10) takes f ∈ AutX x to the pair (1G , f) ∈ AutX̃ x; at the level of

morphisms, it comes from id : π1(G ) → π1(G ). □

1.4. Some corollaries. Let X̃ ≤1 be the 1-truncation of X̃ , i.e., the 1-groupoid obtained
by replacing the groupoids MorX̃ (x1, x2), xi ∈ X̃ , by their π0’s. The functor X̃ → X ′

factors as X̃ → X̃ ≤1 → X ′. The functor

(1.11) X̃ ≤1 → X ′

is a gerbe.1

Corollary 1.4.1. For each x ∈ X , one has
(i) Ker(AutX̃ ≤1(x) → AutX ′(x)) = Cokerϕx.
(ii) AutX (idx) = Ker fx.

1A functor between groupoids is said to be a gerbe if each of its fibers has one and only one isomorphism
class of objects.
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1.4.2. The abelian situation. Suppose that for each x ∈ X the group π1(X , x) = AutX x
is abelian. Then π1(X , x) and the homomorphism (1.9) depend only on x̄ ∈ π0(X ), so we
can rewrite (1.9) as

(1.12) ϕx̄ : π1(G ) → π1(X , x̄), x̄ ∈ π0(X ).

Let L(x̄) := Cokerϕx̄.
The group π0(G ) acts on π1(G ) and π0(X ), and the collection of homomorphisms (1.12) is

π0(G )-equivariant. So the collection of abelian groups L(x̄), x̄ ∈ π0(X ), is π0(G )-equivariant.
In other words, we get a functor

(1.13) L : X ′ → Ab;

as before, X ′ denotes the quotient groupoid π0(X )/π0(G ).
The gerbe (1.11) is banded by the functor L; this follows from Corollary 1.4.1(i).

2. A particular situation

2.1. Subject of this section.

2.1.1. If G is a 2-group and X is the underlying groupoid of G then G × G acts on X
by two-sided translations: namely, (g, g′) ∈ G × G acts by x 7→ gx(g′)−1. So given a
homomorphism of 2-groups B → G×G, we get an action of B on X and the corresponding
2-groupoid X /B.

2.1.2. The goal. Now let B•, G• be crossed modules and π, π′ : B• → G• be homomorphisms.
Then we get the homomorphism (π, π′) : B → G×G, whereB := Cone(B•), G := Cone(G•).
It gives a strict action of the strict 2-group B on X and therefore a strict 2-groupoid X /B.
We will denote this strict 2-groupoid by

(2.1) Cone(B• π,π′
−→ G•).

The main goal of §2 is to give a certain tautological reformulation of the construction of the
2-groupoid (2.1). This will be done in §2.4. Let us note two cases in which this reformulation
looks nice.

2.1.3. Two easy cases. (i) Suppose that B• and G• are abelian in the sense of §1.2.3. Then
Cone(B• π−π′

−→ G•) is a complex of abelian groups 0 → C−2 d−→ C−1 d−→ C0 → 0, and

Cone(B• π,π′
−→ G•) is the strict 2-group associated to this complex in the usual way: its

objects are elements of C0, and for c, c′ ∈ C0 the groupoid of morphisms c → c′ is the
quotient of the set {x ∈ C−1 | dx = c′ − c} by the action of C−2.

(ii) If B−1 = 0 then Cone(B• π,π′
−→ G•) is a 1-groupoid. To describe it, first note that the

maps
B0 ×G0 → G0, (b, g) 7→ π(b)gπ′(b)−1,

G−1 ×G0 → G0, (γ, g) 7→ d(γ)g

define actions of the groups B0 and G−1 on the set G0. These actions combine into an action
of B0⋉πG

−1 on the set G0, where B0⋉πG
−1 is the semidirect product via the homomorphism

B0 π−→ G0 → AutG−1. It is easy to check that the corresponding quotient groupoid (in the

sense of §1.1.2) is Cone(B• π,π′
−→ G•).
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2.1.4. In general, it is easy to check that the objects and 1-morphisms of Cone(B• π,π′
−→ G•)

are the same as in §2.1.3(ii). To describe the 2-morphisms, we use a slight generalization of
the notion of crossed module, see §2.3 below.

2.2. The maps ϕg. Let us describe the map (1.9). In our situation, G = Cone(B•) and X
is the underlying groupoid of Cone(G•). Note that

π1(G ) = H−1(B•) := Ker(B−1 d−→ B0).

We have ObX = G0, and for g ∈ G0 the group AutX g identifies with H−1(G•) via (1.6) (in
particular, AutX g is abelian, so we are in the situation of §1.4.2). Thus the homomorphism
(1.9) is a map

ϕg : H
−1(B•) → H−1(G•).

Lemma 2.2.1. The homomorphism ϕg is as follows:

(2.2) ϕg(β) = π(β) · gπ′(β)−1 = gπ′(β)−1 · π(β), β ∈ H−1(B•).

Proof. By (1.7), the map

Mor(g1, g
′
1)×Mor(g2, g

′
2)×Mor(g3, g

′
3) → Mor(g1g2g3, g

′
1g

′
2g

′
3)

is given by (γ1, γ2, γ3) 7→ γ1 · g1γ2 · g1g2γ3. To get ϕg(β), one has to take g1 = g3 = 1, g2 = g,
γ1 = π(β), γ2 = 1, γ3 = π′(β)−1. □

2.2.2. Remarks. (i) Lemma 2.2.1 implies that in our situation the functor L from §1.4.2 is
g 7→ Cokerϕg, where ϕg is given by (2.2).
(ii) The author hopes that the functor L from the previous remark can serve as an abstract

model of the Lau group scheme (in the sense of [D, Thm. 1.1.1]) and that the canonical gerbe
banded by L (see (1.11) and §1.4.2) can serve as an abstract model of the Lau gerbe (by
which we mean the gerbe from [D, Thm. 1.1.1]).

2.3. A way to describe strict 2-groupoids. A strict 2-groupoid with a single object
(a.k.a. a strict 2-group) is “the same as” a crossed module, see §1.2.1-1.2.2. Arbitrary strict
2-groupoids have a similar description via a slight generalization of the notion of crossed
module.

2.3.1. Definition. Let X be a set. An X-crossed module is the following data:
(i) a groupoid Γ with ObΓ = X;
(ii) a functor

Γ 7→ {Groups}, x 7→ Hx;

(iii) a collection of homomorphisms

dx : Hx → AutΓ x

such that dx is functorial in x and

dx(h)h′ = hh′h−1 for all x ∈ X and h, h′ ∈ Hx,

where dx(h)h′ stands for the image of h′ under the automorphism of Hx corresponding to
dx(h) ∈ AutΓ x by functoriality of Hx.

If X has a single element one gets the usual notion of crossed module, see §1.2.1.
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2.3.2. From strict 2-groupoids to X-crossed modules. Let C be a strict 2-groupoid and X =
Ob C. Then one defines an X-crossed module as follows:

(i) Γ is the 1-skeleton of C (i.e., the 1-groupoid obtained by disregarding the 2-morphisms
of C);
(ii) for x ∈ X one sets Hx := Ker(AutΓ x↠ AutCx), where Ker stands for the categorical

fiber over idx ∈ AutCx; so Hx is formed by pairs (g, f), where g ∈ AutΓ x and f : g
∼−→ idC x

is a 2-morphism in C;
(iii) the map dx : Hx → AutΓ x forgets f .

We have defined a functor from the 1-category of strict 2-groupoids to the category of
pairs consisting of a set X and an X-crossed module. This functor is an equivalence, and
the inverse functor is described below.

2.3.3. From X-crossed modules to strict 2-groupoids. In the situation of §2.3.1 we have to
define the groupoids MorC(x, x

′) for x, x′ ∈ X and the composition functors

(2.3) Mor(x′, x′′)×Mor(x, x′) → Mor(x, x′′).

for x, x′, x′′ ∈ X.
MorC(x, x

′) is defined to be the groupoid quotient of the set MorΓ(x, x
′) with respect to

the action of Hx′ that comes from the homomorphism dx′ : Hx → AutΓ x
′. Thus a morphism

in Mor(x, x′) is a triple
α = (g, g̃, h),

where g, g̃ ∈ Mor(x, x′) are the source and target of α, and h ∈ Hx′ is such that g̃ = dx′(h) ·g.
At the level of objects, the functor (2.3) is just the composition map in the groupoid Γ.

Let us define (2.3) at the level of morphisms. Let α1 (resp. α2) be a morphism in Mor(x′, x′′)
(resp. Mor(x, x′)). As above, write αi as a triple (gi, g̃i, hi). The image of (α1, α2) under
(2.3) is defined to be the triple

(g1g2, g̃1g̃2, h1 · g1h2)
similarly to formula (1.7).

2.4. Describing the 2-groupoid (2.1). Let X be the underlying set of G0. Let us describe

the X-crossed module corresponding to the strict 2-groupoid Cone(B• π,π′
−→ G•) (the 2-

groupoid itself can be recovered from the X-crossed module as explained in §2.3.3).
The 1-groupoid Γ is the one corresponding to the action of the group B0 ⋉π G

−1 on X
described in §2.1.3(ii). It remains for us to describe the data from §2.3.1(ii-iii), i.e., the
(B0 ⋉π G

−1)-equivariant family of groups Hg, g ∈ G0, and the homomorphisms

dg : Hg → Stabg, g ∈ G0,

where Stabg ⊂ B0 ⋉π G
−1 is the stabilizer of g, i.e.,

(2.4) Stabg = {b · γ | b ∈ B0, γ ∈ G−1, d(γ) = π(b)−1 · gπ′(b)g−1}.
It is easy to check that these data are as follows:
(i) Hg = B−1, and the B0 ⋉π G

−1-equivariant structure comes from the action of B0

on B−1;
(ii) in terms of (2.4), the map dg : B

−1 → Stabg is given by b = d(β), γ = π(β)−1 · gπ′(β),
where β ∈ B−1; so

(2.5) dg(β) = d(β) · π(β)−1 · gπ′(β), β ∈ B−1.
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2.4.1. Remark. It is easy to check that the map

dg : B
−1 → B0 ⋉π G

−1, β 7→ d(β) · π(β)−1

is a homomorphism whose image centralizes G−1. So the map (2.5) is a homomorphism.
Moreover, one could rewrite (2.5) as dg(β) =

gπ′(β) · d(β) · π(β)−1.

Appendix A. Relation to the 2-stack BTG,µ,?
n

A.1. Goal of this Appendix. Let B•,G• be crossed modules in some topos. Suppose we
are given homomorphisms π, π′ : B• → G•. Then one defines a 2-stack

(A.1) Cone(B• π,π′
−→ G•)

similarly to §2.1.2; if the topos is a point then (A.1) is the 2-groupoid (2.1).
Under a very mild assumption2, the 2-stack BTG,µ,?

n from [D, §D.8.3] can be writtten in
the form (A.1) in a rather natural way. The goal of this Appendix is to provide some details
about this in a somewhat informal way.

A.2. The topos. Throughout this Appendix, we fix a prime p. A ring R is said to be
p-nilpotent if the element p ∈ R is nilpotent. Let p-Nilp denote the category of p-nilpotent
rings. The topos relevant for us is the category of fpqc-sheaves of sets on p-Nilpop. From
now on, the word “stack” will refer to this topos.

A.3. The stack BTG,µ
n .

A.3.1. The results of [GM]. Let n ∈ N. Let G be a smooth affine group scheme over Z/pnZ
and

µ : Gm → G

a cocharacter.
For R ∈ p-Nilp let BTG,µ

n (R) be as in [GM, §9]; this is the ∞-groupoid3 of G-bundles
on RSyn ⊗ (Z/pnZ) satisfying a certain condition, which depends on µ. Here RSyn is the
syntomification of R.
µ is said to be 1-bounded if all weights of the action of Gm on Lie(G) are ≤ 1 (if G is

reductive and almost simple this means that µ is minuscule or zero). By [GM, Thm. D], if µ
is 1-bounded then BTG,µ

n is a smooth algebraic stack over Spf Zp; in other words, for every
m ∈ N the restriction of BTG,µ

n to the category of Z/pmZ-algebras is a smooth algebraic
1-stack over Z/pmZ. By [GM, Thm. A], if G = GL(d) and µ is 1-bounded then BTG,µ

n

identifies with the stack of n-truncated Barsotti-Tate groups of height d and dimension d′,
where d′ depends on µ.

A.3.2. The 2-stack BTG,µ,?
n and the conjecture. §D.8.3 of [D] contains a definition of a certain

2-stack BTG,µ,?
n ; in this definition µ is not required to be 1-bounded. Conjecture D.8.4 from

[D] says that if µ is 1-bounded then BTG,µ
n = BTG,µ,?

n (which implies that BTG,µ,?
n is a 1-stack

if µ is 1-bounded).

2See §A.3.3 below.
3If R is good enough (e.g., l.c.i) then the derived stack RSyn ⊗ (Z/pnZ) is classical, so BTG,µ

n (R) is a
1-groupoid.
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A.3.3. To be explained below. Assume that G is lifted to a smooth affine group scheme
over Zp (note that such a lift is automatic if G is reductive). Our goal is to explain why
BTG,µ,?

n can be rather naturally written in the form (A.1), where Bi and Gi are explicit group
ind-schemes over Zp.

A.4. Format of the definition of BTG,µ,?
n .

A.4.1. The story in a few words. According to the definition from [D, §D.8.3], the 2-stack
BTG,µ,?

n is obtained by applying the construction of §2.1.1 to a certain homomorphism of
group stacks

(A.2) B → G×G,

see formula (D.10) of [D]. It turns out that this homomorphism lifts in a rather natural way
to a homomorphism

B• (π,π′)−→ G• ×G•

of fpqc sheaves of crossed modules. Such a lift provides a realization of BTG,µ,?
n in the

form (A.1).

A.4.2. What will be explained. Instead of discussing diagram (A.2), we will only discuss G:
we will recall the definition of the 2-stack G from [D] and explain how to lift it to a sheaf
of crossed modules G•. Let us note that G does not depend on the cocharacter µ (but B
does).

A.4.3. The 2-stack G. By definition,

(A.3) G := G(sRn),

where sRn is a certain stack of Z/pnZ-algebras, whose definition is sketched4 in [D, §D.7.1].
Formula (A.3) just means that

(A.4) G(A) := G(sRn(A)), A ∈ p-Nilp .

The r.h.s of (A.4) makes sense because G is a scheme over Z/pnZ and sRn(A) is an animated
Z/pnZ-algebra.

A.5. Constructing the crossed module G•.

A.5.1. Recollections. In addition to §1.2.1 and the interpretation via strict 2-groups at the
end of §1.2.2, there are two other well known points of view on crossed modules:

(i) a crossed module is the same as a 2-group G with an epimorphism G0 ↠ G, where G0

is a group;
(ii) a crossed module is the same as a groupoid5 internal to the category of groups.

4The stack sRn,Fp
:= sRn × SpecFp is completely described in [D, §D.7.2].

5The nerve of this groupoid is the Čech nerve of the epimorphism G0 ↠ G.
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A.5.2. Strategy for constructing G•. Suppose that G is lifted to a smooth affine group scheme
G̃ over Zp. Suppose that we have a ring scheme A over Spf Zp equipped with an epimorphism

(A.5) A ↠ sRn.

Set G0 := G̃(A). Then we get a homomorphism

(A.6) G0 = G̃(A) → G̃(sRn) = G(sRn) = G.

Using smoothness of G̃, one checks that it is surjective (in the sense of fpqc sheaves). So
one gets a crossed module G• by applying §A.5.1(i) to the homomorphism (A.6). One has
G−1 = Ker(G0 ↠ G).

A.5.3. A nice crossed module. There exists an epimorphism (A.5) with A = Wn, where Wn

is the ring scheme6 of n-truncated p-typical Witt vectors. Moreover, if p > 2 then there is a
very nice epimorphism

(A.7) Wn ↠ sRn

whose kernel equals Ŵ (Fn) := Ker(F n : Ŵ → Ŵ ). Here Ŵ ⊂ W is the following ind-scheme:

for any A ∈ p-Nilp, the ideal Ŵ (A) is the set of all x ∈ W (A) such that all components of
the Witt vector x are nilpotent and all but finitely many of them are zero.
The crossed module G• corresponding to (A.7) is very simple: G0 = G̃(Wn), G−1 =

G̃(Ŵ (Fn)), d : G−1 → G0 comes from the canonical map Ŵ (Fn) → Wn, and the action of G0

on G−1 comes from the equality G−1 = Ker(G̃(Wn ⋉ Ŵ (Fn)) ↠ G̃(Wn)), where Wn ⋉ Ŵ (Fn)

is the semidirect product.
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6Wn is not a scheme of Z/pnZ-algebras (this is why we need G̃). On the other hand, Wn,Fp is a scheme

of Z/pnZ-algebras.
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