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INTRODUCTION

0.1. Let W be a Weyl group. Let Irr(W) be the set of (isomorphism classes of)
irreducible representations over C of W.

In this paper we define a subset Irrgs,(W) of the set of special representations
of W. (See 1.3, 1.14.)

To do this we consider a connected reductive group G with Weyl group W
defined and split over a finite field Fj, with group of rational points G(F},) and
also an F-rational structure on G for which the Frobenius acts on the Weyl group
as opposition, with group of rational points G(Fy)’. From [L84] it is known that
(for sufficiently large ¢) there is a bijection p +— p’ from the set of unipotent
representationsof G(F,) to the set of unipotent representations of G(F,)" such
that +1 times the dimension of p’ (as a polynomial in ¢) is obtained by replacing
g by —q in the polynomial in ¢ which gives the dimension of p. Our observation is
that there is at most one p = pg in the unipotent principal of G(Fy) series which
corresponds to a special representation E of W and is such that p’ is cuspidal
for G’(F,). The E obtained in this way are called superspecial. The irreducible
Weyl groups for which such E exist are listed in 1.17. It turns out that if F is
as above then dim(pg) is of the form ¢*#4(G(F,))*/(£cePr(—q)) where ag,cg
are independent of ¢, §(G(F}))* is the part prime to ¢ in §(G(F,)) and Pg is a
polynomial in ¢ with coefficients in IN; moreover, Pgr can be factored as a product
of remarkably simple polynomials (each one with coefficients in N).

Although the arguments above were our motivation, our definition of super-
special representations is actually purely in terms of generic degrees and does not
make use of the groups G(Fy) or G'(Fy).

In §2 we associate to a superspecial representation of W (assumed to be ir-
reducible) a constructible representation Zy, of W (or, in the nonsimply laced
case, two such representations, Zy, Z{;,.) We will show elsewhere that using these
representations one can reconstruct (without using algebraic geometry) the finite
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2 G. LUSZTIG

groups (products of symmetric groups) associated in [L84] to any special represen-
tation, which were used in [L.84] to classify unipotent representations of reductive
groups over Fy,.

In §3 the definition of superspecial representations is extended to finite non-
crystallographic Coxeter groups.

In §4 we associate (using [L02]) to a superspecial representation of W (assumed
to be irreducible with trivial opposition) an elliptic conjugacy class of W, which
we call the superspecial conjugacy class.

0.2. Notation. For n € Z we set [n/2] =n/2if n € 2Z and [n/2] = (n —1)/2 if
n €22+ 1.

1. DEFINITION OF SUPERSPECIAL REPRESENTATIONS

1.1. The set of simple reflections of W is denoted by I. Let r be the number of
orbits of the opposition involution op : I — I.

Let u be an indeterminate. For E € Irr(W) the generic degree Dg(u) can be
defined in terms of the Iwahori-Hecke algebra of W (see for example [AL,p.202]).
(A priori, Dg(u) is in the quotient field of C[ul; in fact, it is in Qu].) It is known
that

r

(a) Dp(u) = u®® [ [(u™ = 1)/((=1)*9"= cp Pp(—u))
i=1
where e, e, ..., e, are the exponents of W, ag € N, cg € {1,2,3,...} and Pg(u)

is a product of cyclotomic polynomials.

1.2. We say that F is a special representation if E appears in the ap-th sym-
metric power of the reflection representation of W. (It then appears there with
multiplicity 1.)

Let Irrg, (W) be the subset of Irr(W) consisting of special representations. (This
subset has been introduced in [L79a].)

In [L79], the set Irr(W) has been partitioned into families; it is known that any
family contains a unique special representation.

For E € Irr(W) we denote by v the largest integer such that (1+u)7® divides
the polynomial Dg(u).

Theorem 1.3. (i) For any E € Irr(W) we have yg < r.

(i) The set Irrgsp, (W) := {E € Irrg,(W);yg = r} consists of at most one
element.

(11i) If E € Irrgsp,(W) then Pg(u) € Nlu|. It has degree 2ap + $(I) and is a
product of polynomials of the form 14+u®+u?s+---+u=Ds where s € {1,2,3,...}
and [ s a prime number dividing 2cg.

To prove the theorem we can assume that W is irreducible. The various cases
will be considered in 1.6-1.13.
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We say that £ € Irr(W) is superspecial if it is contained in Irrgs,(W). We say
that W is superspecial if Irrgg, (W) # 0; we then denote by Ey the unique object
of Irrge, (W) and by Fy the family of Irr(W) that contains Eyy.

1.4. Let X C Z-o, $#(X) =m < oo. We set
m
= A— :
=20 (3)

Note that n > 0. Let X° = XN2N, X' = XN(2N+1), m°® = 4(X°), m! = #(X1).
Let

(a) ( ) ZA/2+( ) > A2+m'/2+ [n/2).

AeX0 xext

We show:
(b) We have a < [n/2] with equality if and only if X = {1,3,...,2m — 1}.
We have

(”;0> —AGX);OA/zg (1+24+-+mM°=1)—2+4+---+2m")/2<-m’ <0

with the last < being = if and only if m® = 0. We have

(n;l> +m' /2= ) A2 < (14344 (2m! 1)) /2= (1434 -+(2m' ~1)) /2 =0
rext

with < being = if and only if X! = {1,3,...,2m! —1}. Since m = m® +m?!, this
proves (b).
1.5. Let (X,Y) CNxNbesuchthat 0¢ Y,z =4(X) < oo,y =4(Y) < co. We
set m=x+ vy,

n=Y A+ A—[(m-1)?%/2]/2

reX A€Y

Let
XY =XnN2N, X' = XN (2N +1),2° = 4(X°), 2! = #(X1),

Yo=Y N2N,Y' =Y NN +1),y° =#(Y?),y" = 4(Y").

(a) a= (3320) + (5521) + (y;) + (y;) + a0 o'y = 3 A= S A +2[n/2).

reX AEY
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(b) We have a < 2[n/2] with equality if and only if
(X,Y) = ({0,2,4,...,m —2},{1,3,....m — 1})
(with m even) or

(X,Y) = ({0,2,4,...,m —1},{1,3,....,m — 2})

(with m odd).
We have a = o + a!? + 2[n/2] where

(x .
a =

7

) )\€X0|_IY1

We have

where
2= (142434 -+ (@ +y' = 1)) = (0+2+4+ -+ (22" =2)) — (1+3+-- -+ (2y" —1).

If X°={0,2,4,...,22% =2}, V! = {1,3,...,2y* — 1}, we have a? = z; if this
condition is not satisfied then o' < z Now z = 0 if 2° = ¢! or 2° = y* + 1 and
z < 0 in all other cases. We see that o' = 0 if

X% =10,2,4,...,22° -2}, v' ={1,3,...,22Y — 1}
(for some xy > 0) or if
X% =10,2,4,...,22° -2}, y' ={1,3,...,22" — 3}

(for some xg > 1) and a®! < 0 in all other cases.
Similarly, o!® = 0 if

Y =1{0,2,4,...,20° — 2}, X* = {1,3,...,2" — 1}
(and yo > 0 must be 0 since 0 ¢ Y°) or if
Y?=10,2,4,...,24° =2}, X' = {1,3,..., 29" — 3}

(for some yo > 1, but this would imply 0 € Y° which is not the case); we have

0 < 0 in all other cases. In other words, we have o'® = 0if Y =0, X! =0
that is y° = 2! = 0) and o!? < 0 in all other cases. When 20 =y, 40 =2 =0
we have 20 = y* = m/2 so that m € 2N. When 20 = ¢! + 1, y° = 2! = 0 we have
20 = (m+1)/2,y0 = (m —1)/2 so that m € 2N + 1. This proves (b).
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1.6. In this subsection we assume that W is of type A,,_1 for some n > 1. Then
Irr(W) is indexed as in [L84] by the various X C Z( as in the beginning of 1.4.
By the formulas for Dg(u) in [L84,p.358] we see that if E € Irr(W) corresponds
to X then g is equal to « in 1.4(a). Then 1.3(i),(ii) follow from 1.4(b).

We see that the condition that Irrss,(W) # 0 is that n = (k? + k)/2 for
some k > 1; for such n the unique element E € Irry,, (W) corresponds to X =
{1,3,...,2k — 1}; we have cg =1,

Pp(u)= 1+ u)*A 4+ a1+ a2 1+ 4?1/ (1 4 ).

We see that 1.3(iii) holds.

1.7. In this subsection we assume that W is of type B, for some n > 2. Then
Irr(W) is indexed as in [L84] by the various (X,Y) as in the beginning of 1.5 such
that §(X) = #§(Y) + 1. By the formulas for Dg(u) in [L84,p.359] we see that if
E € Irr(W) corresponds to (X,Y’) then g is equal to « in 1.5(a). Then 1.3(i),(ii)
follow from 1.5(b).

We see that the condition that Irrg, (W) # 0 is that n = k* + k for some k; for
such n the unique element E € Irrgg, (W) corresponds to

(X,Y)=({0,2,4,...,2k},{1,3,...,2k — 1}).
We have cp = 2%,
Pe(u) = (1 +u)® (1 +u®)? 1 (1 4+ a2 (1 + u?F).

We see that 1.3(iii) holds. We have deg(Pg) = 2k(k + 1)(2k + 1)/3.

1.8. In this subsection we assume that W is of type D,, for some n > 4. Then
Irr(W) is indexed as in [L84] by the various (X,Y) as in the beginning of 1.5 such
that #(X) = £(Y) except that there are two representations corresponding to any
pair of the form (X,Y) with X =Y.

By the formulas for Dg(u) in [L84,p.359] we see that if E € Irr(W) corresponds
to (X,Y) then g is equal to « in 1.5(a). Then 1.3(i),(ii) follow from 1.5(b).

We see that the condition that Irrgs,(W) # 0 is that n = k? for some k; for
such n the unique element E € Irry,, (W) corresponds to

(X,Y) = ({0,2,4,...,2k —2},{1,3,...,2k — 1}).
We have cp = 2F~1,
Pg(u) = (1+u) 11+ u?)? 72 (14722 (14?70,

We see that 1.5(iii) holds. We have deg(Pg) = k(4k* —1)/3.
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1.9. In this subsection we assume that W is of type Eg. Using the table in
[L84,p.363], we see that 1.3(i),(ii) hold; Irrss, (W) consists of the unique E such
that dim(F) = 80. We have cg =6, agp =7,

Pg(u) = (14 u)*(1 +u*)*(1 4+ v*)3(1 4+ u + u?)2

Hence 1.3(iii) holds. We have deg(Pg) = 20.

1.10. In this subsection we assume that W is of type Er. Using the table in
[L84,p.364,365] we see that 1.3(i),(ii) hold; Irrss,(W) consists of the unique E
such that dim(F) = 512, ag = 11. We have cg = 2,

Pe(u) = (1 +u)*(1 +u®)?(1 +u®)(1 +u") (1 4 ).

Hence 1.3(iii) holds. We have deg(Pg) = 29.

1.11. In this subsection we assume that W is of type FEg. Using the table in
[L84,p.366-369] we see that 1.3(i),(ii) hold; Irrss,(WV) consists of the unique E
such that dim(F) = 4480. We have cg = 120, ag = 16,

Pp(u) = 1+ u)*(1+u>)* A +u®)* (1 +u+u?)* (1 +u+u? +u® +uh)2

Hence 1.3(iii) holds. We have deg(Pg) = 40.

1.12. In this subsection we assume that W is of type Fj. Using the table in
[L84,p.371] we see that 1.3(i),(ii) hold; Irrss, (W) consists of the unique E such
that dim(F) = 12. We have cg = 24, ap = 4,

Pr(u) = (1 +u)*(1 +u?*)?*(1 +u + u?)%

Hence 1.3(iii) holds. We have deg(Pg) = 12.

1.13. In this subsection we assume that W is of type G5. Using the table in
[L84,p.372] we see that 1.3(i),(ii) hold; Irrss, (W) consists of the unique E such
that dim(F) = 2, cg = 6. We have ag = 1,

Pg(u) = (14 u)*(1 + u + u?).

Hence 1.3(iii) holds. We have deg(Pg) = 4.
This completes the proof of Theorem 1.3.

1.14. In the case where W is irreducible of type # A, Er, the condition that W
is superspecial is equivalent to the following condition:

(a) There exists E € Irrg, (W) such that for any £’ € Irrs,(W) — {E'} we have
cgr < Cg.
(Then E is unique and is equal to Eyy.)
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1.15. It may happen that some non-special E € Irr(W) satisfy yg = r. For W of
type Es, the representations 7168,,,2688, (notation of [L84]) are such examples;
for W of type Fy, the representations 41, 161 (notation of [L84]) are such examples.
But for other irreducible W there are no such examples.

1.16. We can write W = Wy x Wy x...x W, where W1, W5, ..., W, are irreducible
Weyl groups. If E;, E! are in Irt(W;) (i = 1,...,e) then By K E; X ... X E,,
EIXE,X.. . K E! are in the same family of Irr(W) if and only if F;, E! are in the
same family of Irr(W;) for i = 1,...,e; we have By X By X ... K E, € Irr,, (W) if
and only if E; € Irrg,(W;) fori=1,...,e; we have By X E; K. . . KE, € Irrg,, (W)
if and only if E; € Irrg,,(W;) fori=1,... e.

1.17. Here is the list of superspecial Weyl groups W that are irreducible or {1}.
A(k2+k)/2—1 (ke {1,2,3,...});
Byayy (K €{1,2,3,...});
D2, k € {2,3,4,...};
Es, E7, Eg, Fy, Gs.
We note that in each case (except in type A and FE7) we have that r is even.

2. THE REPRESENTATIONS Zy, Zy,

2.1. For any I’ C I we denote by W, the subgroup of W generated by I’; this
is again a Weyl group. For E’ € Irr(W;) we recall that the truncated induction
Jiw, (E') is the representation of W in which the the multiplicity of any E € Irr(W')
is equal to the multiplicity of £ in the ordinary induction indyy, (E') if ap = ap
and is 0 if ag # apg:.

2.2. In this subsection we assume that W is irreducible or {1}, superspecial,
simply laced. We will associate to W a representation Zy, of W of the form Zy, =
FEi®FE;&...® E; where Eq, Es, ..., E; are distinct irreducible representations in
Fw satisfying the identity

(a) 05114—05214—---4—05321
and (in the case where W is of type # A) the identity
(a1) (1)) ()Pl o (1)) =0

where b € N is defined as in [L84,(4.1.2)].

If W is of type A (this includes the case W = {1}) there is a unique choice for
such Zw namely Zy = Ew (recall that cg,, = 1).

If W is of type E7 there is again a unique choice for such Zy namely Zy =
Ey @ Ey where Eq, E5 are the two objects of Fy. The identities (a),(al) are now
27t427t=1. 271 -27t =0,

We now assume that W is of type # A, Fr.
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(b) There is a unique choice of ¢ € I such that I — {i} = I'UI", W;_;y =
Wi x Wiy with Wi superspecial, irreducible or {1} and with W a product of
Weyl groups of type A and such that Ey appears with nonzero multiplicity in

T, o (BEw,, Bsgnw,,).
We define
(c) Zy = JVMV/I_{Z-} (Zw,, Wsgnw,, ).

(We can assume that Zw,, is known by induction.) We now describe Zy in the
various cases.

If W is of type D2 (with k& > 2) we have that Wy is of type D(_1)2 (if k > 3),
I' =0 (if k = 2) and Wy is of type Ao,_o (if kK > 3) and of type Ay x Ay x Ay (if
k=2).

We have Zy, = ®,FE, where ¢ runs over all permutations of 1,2,3,...,2k — 2
which preserve each of the unordered pairs (1,2),(3,4),...,(2k — 3,2k — 2) and
for such o, E, € Irr(W) corresponds as in 1.8 to

(X,Y) = ({0,0(2),0(4),...,0(2k —2)}, {o(1),0(3),...,0(2k — 3), 2k — 1}).

Note that cg, = 287! for any o hence 3" cgi = 1. The identity (a) is now
2 h+l p o=kl 1 ... 4 27F+1 — 1 (the sum has 2*~! terms.)

For E,,(X,Y) as above we have (—1)?% = (—1)2iev I} where h = +1 is
independent of o (see [L79a]); hence the identity (al) holds.

If W is of type Eg we have I’ = () and Wy~ of type As x Ay x A;. We have
Zw = 807 + 60g + 109 (notation of [L15,4.4]. We have cgg, = 6, cgo, = 2, €10, = 3.
The identities (a),(al) are now 6+ +271 +371 =1, 671 —2"1 + 371 =0.

If W is of type Eg we have I’ = () and Wy of type A4 x A3. We have

Zw = 448016 + 315018 + 420018 + 42020 + 716817 + 134419 + 201619

(notation of [L15,4.4]). We have
C4480,6 = 120, ¢3150,5 = 6, C4200,5 = 8, C420,, = 9,
C71681, = 12, C1344,9 = 4, C2016,5 = 6.
The identities (a),(al) are now
1200 +67 148 54127 4471 4671 =1,
1207+ 67148457t —1271 —471 —671 =0
In each case, Zy is a constructible representation of W (or a cell in the sense

of [L.82]); moreover each irreducible component of Zy is 2-special (in the sense if
[L15]).
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2.3. In this subsection we assume that W is irreducible, superspecial, not simply

laced. We will associate to W two representations Zyy, Zj;, of W of the form
Zw=E10E:®.. ®FE, Z, =E{®FE,®...® E,

where E1, Es, ..., E; (resp. E}, E}, ..., Ej) are distinct irreducible representations

in Fyy satisfying

(a) Cg;ll—{—cg,;_{_..._{_cg‘tl:l
and cg, = cgy,...,Cp, = Cg;, by, =bpy, ..., by, = bE;.

Now statement 2.2(b) remains true in our case except when W is of type B, G
or Fy in which case 2.2(b) is true if one replaces “unique choice of i € I” by “exactly
two choices of 7 € I”.

If W is of type By, G2 or Fy we define Zy, as in 2.2(c) using one of the two
choices of 7 as above; in these cases we have I’ = (). The same definition using the
second choice of i gives a second representation denoted by Zi;,. If W is of type
By, we have Zy = 21 + 19, Zj;, = 21 + 15 (notation of [L15, 4.4]; the 15 in Zy is
different from the 15 in Zj;,. Then (a),(al) become 271 +271 =1, 271 —2-1 =0,

If W is of type G2, we have Zyw = 21 + 25 + 13 Z{;, = 21 + 22 + 13 (notation
of [L15,4.4]); the 13 in Zy is different from the 13 in Zj;,. Then (a),(al) become
6142143 1=1,6"1-—2"14+31=0.

If W is of type Fy, we have

Zyw = 124 P 6 ® 96 D 47 © 165,

Ziy = 124866096P47®165, (notation of [L15,4.4]; the 9¢, 47 in Zy are different
from the 9¢,47 in Z{;,. Then (a),(al) become 2471 4371 + 871 + 41 4 471 =1
2471 4+ 37 4871 -4t 471 =0,

When W is of type Bi2y, k > 2, statement 2.2(b) remains true. We define

Zyw = JVMV/I_{Z-} (Zw,, Msgnw,, ),

Ty = J‘%i{i} (Zyy,, Rsgnw,,),

(We can assume that Zyy,,, Z{/V,/ are known by induction.)

We have Zy, = @, E, where o runs over all permutations of 1,2, 3,...,2k which
preserve each of the unordered pairs (1,2),(3,4),...,(2k — 1,2k) and for such o,
E, € Irr(W) corresponds as in 1.7 to

(X,Y)=({0,0(2),0(4),...,0(2k)},{0(1),0(3),...,0(2k —1)}).

Note that cg, = 2" for any o hence Y cgi = 1. For E,,(X,Y) as above we have

(—=1)bPe = (—1)2iev Ih where h = £1 is independent of o (see [L79a]); hence the
identity (al) holds.
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We have Z{;, = @, E. where o runs over all permutations of 0,1,2,3,...,2k—1
which preserve each of the unordered pairs (0,1),(2,3),...,(2k — 2,2k — 1) and
for such o, E/ € Irr(W) corresponds as in 1.7 to

(X,Y) = ({0(0),0(2),0(4),...,0(2k — 2),2k}, {o(1),0(3),...,0(2k — 1)}).

In each case, Zw, Zj;, are constructible representations of W (or cells in the
sense of [L82]) such that Zj;, = Zw ® sgnw; their irreducible components are
2-special (in the sense if [L15]).

3. THE NONCRYSTALLOGRAPHIC CASE

3.1. In this section we assume that W is an irreducible noncrystallographic finite
Coxeter group with set I of simple reflections. Now Irr(W) is defined as in 0.1;
the generic degree Dg(u) for E € Irr(E) is defined as in 1.1. (We now have
Dg(u) € Rlul, see [AL,p.202], [1.82].) From the formulas for Dg(u) in type Hy
in [AL] one can verify that an equality like 1.1(a) still holds except that now cg
is only an algebraic integer in R~g and Pg(u) is now only in R[u| with leading
coefficient 1; a similar property holds in the cases # H4. Then ag € N is defined
as in 1.1. The definition of families in [L79] and that of Irry, (V) extend in an
obvious way to our case. (The representations in Irrs, (W) are described explicitly
in type Hy in [AL,85].) For E € Irr(W) we define yg € N as in 1.2.

Theorem 3.2. (i) For any E € Irr(W) we have v < #(1).

(ii) The set Irrgs, (W) = {E € Irrg,(W);vg = #(I)} consists of exactly one
element.

(111) If E € Irrgs, (W) then Pg(u) € R>olu]. It has degree 2ap + (I).

This can be verified using the known results on Dg(u). Assume first that W
is of type Hy. Now Irrgs, (W) consists of the unique E such that dim(E) = 24,
agp = 6. We have cg = 120/(13 — 8X) = 120(5 + 8)),

Pe(u) = (u+1)*(u? + u+ 12 (u? + M+ 1) (u® = du+1)2
where
A=(14V5)/2 € Rsag,—A = (V5 —1)/2 € Rso.

Assume next that W is of type Hs. Now Irrg,, (W) consists of the unique E
such that dim(E) = 4, ag = 3. We have cg = 2, Pe(u) = (1 +u)(1 +u3)(1 + u).

If W is a dihedral group of order 2p, p =5 or p > 7 then Irrg, (W) consists of
the unique E such that dim(F) = 2, ag = 1. We have

p—2

ce=p/(1-1-¢1)=]a-¢)

t=2

Pr = (14 u)2(1+ (€ + & Hu+u?) where £ = 2™V1/p,
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4. SUPERSPECIAL CONJUGACY CLASSES IN W

4.1. In this section we assume that W is an irreducible superspecial Weyl group.
Let F = EW

Until the end of 4.3 we assume also that the opposition op : I — I is the identity
map.

Let G,G(F,), pr,p’ be asin 0.1. Recall that p’ is a unipotent cuspidal represen-
tation of G(F,), say over Q;. For any w € W let X,, be the subvariety of the flag
manifold of G defined in [DL] (it consists of Borel subgroups which are in relative
position w with their transform under the Frobenius map. Let H:(X,) be the
i-th [-adic cohomology with compact support of X,, viewed as a representation
of G(Fy). Let ¢(W) be the set of all w € W such that p’ appears with nonzero
multiplicity in the virtual representation ., H:(X,,) of G(F;). Let M(W) be the
minimum of the legths of various elements in ¢(W) and let ¢y, (W) be the set
of elements of ¢(W) of length M (W). The following result can be deduced from
[L02,2.18].

Theorem 4.2. There is a unique conjugacy class Cy in W such that (W) C
Cw.

The conjugacy class Cyy is said be the superspecial conjugacy class of W. It is
an elliptic conjugacy class.

4.3. We describe Cyy in each case (we use [L02]). We also describe in each case
the number M (W) (we use [GP]).

If W is of type By2y, k > 1 viewed in an obvious way as a subgroup of Sy(x2 1)
then Cyy is the elliptic conjugacy class with cycle type 4 +8 + 12+ - - - + 4k. We
have M(W) = k(k +1)(2k +1)/3.

If W is of type D2, k > 2 even, viewed in an obvious way as a subgroup of Sy
then Cyy is the elliptic conjugacy class with cycle type 24+ 6 + 10+ - - - + (4k — 2).
We have M(W) = 2k(k* —1)/3.

If W is of type Eg then Cyy consists of elements with characteristic polynomial
(u? —u+1)* in the reflection representation. We have M (W) = deg(Pg(u)) = 40.
We have ¢(W) = ¢pin(W) = Cw, #(Cw) = dim(E).

If W is of type E7 then Cyy is the Coxeter conjugacy class. We have M (W) = 7.

If W is of type Fy then Cyy consists of elements with characteristic polynomial
(u? + 1)? in the reflection representation. We have M (W) = deg(Pg(u)) = 12.
We have ¢(W) = ¢ppin(W) = Cw, #(Cw) = dim(E).

If W is of type G5 then Cyy consists of elements with characteristic polynomial
u? +u+1 in the reflection representation. We have M (W) = deg(Pg(u)) = 4. We
have ¢(W) = ¢in(W) = Cw, $(Cw) = dim(E).

4.4. We now assume that the opposition op : I — I is not the identity map. It
induces an involution op : W — W. Then results similar to 4.2 hold (we use
[L02,2.19]). They associate to W a twisted conjugacy class in W (an orbit of the
W-action x : w — zwop(x)~1 on W).
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