
PERVERSITY OF COINVARIANTS OF AFFINE SPRINGER SHEAVES

ALEXIS BOUTHIER, DAVID KAZHDAN, AND YAKOV VARSHAVSKY

Abstract. Using techniques of [BKV], we construct a perverse t-structure on the ∞-category
of ℓ-adic LG-equivariant sheaves on the regular-semisimple bounded locus of the loop group LG

and prove that the derived τ -coinvariants of a�ne Grothendieck�Springer sheaves are perverse.
Our main new ingredient is a theorem of Yun [Yun2] on compatibility of actions.
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Introduction

0.1. The �nite-dimensional case. (a) Let G be a connected reductive group over an algebraically
closed �eld k, and let T ⊆ B and W be a maximal torus, a Borel subgroup and the Weyl group of
G, respectively. Consider the diagram

[G/G]
pfin

←− [B/B]
pr−→ T,

where [G/G] and [B/B] denote quotient stacks corresponding to the adjoint actions, morphism pfin

(called the Grothendieck�Springer resolution) is induced by the inclusion B ↪→ G, and morphism
pr is induced by the projection B → B/Ru(B) ≃ T .
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(b) To every local system L on T , we associate the Grothendieck�Springer sheaf

SfinL := (pfin)! pr
∗(L)[dimG] ∈ D([G/G]).

Since [B/B] is a smooth stack, while pfin is a small morphism, the sheaf SfinL is perverse and is the
intermediate extension of its restriction to the regular semisimple locus [Grs/G].

(c) Moreover, if L is W -equivariant, then SfinL is equipped with a W -action. In this case, for
every representation τ ∈ RepQl

(W ) one can form its τ -isotypical component

SfinL,τ := τ ⊗Ql[W ] S
fin
L ∈ D([G/G]),

which is again a perverse sheaf, and is the intermediate extension of its restriction to [Grs/G].
Furthermore, SfinL,τ is irreducible, if L and τ are irreducible.

The goal of this work is to prove analogs of these results for loop groups, using constructions
and results from [BKV].

0.2. The a�ne case. (a) Let L+(G) and LG be the arc group and the loop group of G, respec-
tively, let ev : L+(G)→ G be the projection (see Section 2.1.1), and let I := ev−1(B) ⊆ L+(G) be
the Iwahori subgroup scheme.

(b) Let C ⊆ LG be the locus of �bounded elements�. More precisely, we de�ne C ⊆ LG to be the
preimage C := (Lχ)−1(L+(c)), where c := Spec k[G]G is the Chevalley space of G, Lχ : LG→ L c
is the morphism between loop spaces induced by the projection χ : G → c, and L+(c) ⊆ L c is the
arc space of c. Consider the diagram

[C/LG] p←− [I/I]
pr−→ T,

where [C/LG] and [I/I] denote quotient stacks corresponding to the adjoint actions, morphism p
(called the a�ne Grothendieck�Springer resolution) is induced by the inclusion I ↪→ C ⊆ LG, and
morphism pr : [I/I]→ T is induced by the projection I

ev−→ B
pr→ T .

(c) Let ℓ be a prime number di�erent from the characteristic of k. Every ∞-stack X over k
gives rise to a stable ∞-category D(X ) of ℓ-adic sheaves on X , and every morphism f : X → Y of
∞-stacks gives rise to a pullback functor f ! : D(Y) → D(X ) (see Section 1.2.1). In particular, to
every ∞-stack X one can associate a dualizing sheaf ωX ∈ D(X ), de�ned to be the !-pullback of
Ql ∈ D(pt).

(d) As in the Lie algebra case, the projection p is ind-fp-proper, where �fp� stands for �nitely-

presented (see Section 2.3.1(b)), therefore the pullback p! : D([C/LG])→ D([I/I]) has a left adjoint
p! (see [BKV, Proposition 5.3.7]). For every local system L on T , we set

SL := p! pr
!(ωT ⊗ L) ∈ D([C/LG]),

and call it the a�ne Grothendieck�Springer sheaf.

(e) We denote by C• ⊆ C the open ind-subscheme such that C•(k) = C(k) ∩ Grs(k((t))), set
I• := I ∩ C•, and let p• : [I•/I] → [C•/LG] and SL,• ∈ D([C•/LG]) be the restrictions of p and
let SL, respectively.

0.3. Main results. (a) Assume that the derived group Gder of G is simply connected and that
the order of W is prime to the characteristic of k. In this case, we show that the stable ∞-category
D([C•/LG]) is equipped with a natural perverse t-structure.

2



(b) Assume further that the characteristic of k is either zero or greater than 2h, where h is the
Coxeter number of G.1 In this case we show that for every local system L on T , the sheaf SL,•
is perverse, and is the intermediate extension of its restriction to the locus [C≤0/LG] of bounded
elements with regular semisimple reduction. Moreover, we show that if the local system L is W -

equivariant, then SL,• is equipped with a natural action of the extended a�ne Weyl group W̃ of G.

In this case, for every representation τ ∈ RepQl
(W̃ ), one can form the τ -isotypical component

SL,•,τ := τ ⊗LQl[W̃ ]
SL,• ∈ D([C•/LG]).

(c) Furthermore, we show that SL,• is W̃ -constructible, that is, the quotient stack [C•/LG] has
a constructible strati�cation such that !-restriction of SL,• to each stratum is a local system, whose

�bers are perfect complexes of Ql[W̃ ]-modules. Therefore, for every �nite-dimensional representa-

tion τ ∈ RepQl
(W̃ ), the τ -isotypical component SL,•,τ is constructible.

(d) Finally, the main result of this work asserts that for every representation τ ∈ RepQl
(W̃ ), the

τ -isotypical component SL,•,τ is perverse.

0.4. Remarks. (a) Note that while the Lie algebra analogs of parts (a)-(c) were known before,
the Lie algebra analog of part (d) is new.

(b) Unlike SL,•, we do not expect that perverse sheaf SL,•,τ is always the intermediate extension
of its restriction to [C≤0/LG]. Similarly, we do not expect that SL,•,τ is always irreducible, when
L and τ are irreducible.

0.5. Outline of proofs. (a) Since Gder is assumed to be simply connected, the Chevalley space
c is smooth. Then, mimicking the Lie algebra case, considered in [BKV], we show that the stack
[C•/LG] is placidly strati�ed, that is, has a constructible strati�cation {[Cw,r/LG]red}w,r such
that each stratum is a placid stack. Therefore each D([Cw,r/LG]red) is equipped with a canonical
(!-adapted) perverse t-structure, and the perverse structure of D([C•/LG]) is constructed by gluing.

(b) As in the Lie algebra case, to prove the assertion of Section 0.3(b), we show that the a�ne
Grothendieck�Springer �bration p• : [I•/I]→ [C•/LG] is small. Moreover, we deduce the smallness
from codimension formula for Goresky�Kottwitz�MacPherson strata, dimension formula for a�ne
Springer �bers Flγ and �atness of projection vn : In → Ln(c) between truncated arc spaces.
Finally, we deduce the �atness of vn from the corresponding result for Lie algebras using Jordan
decomposition and identifying the unipotent locus of the group with the nilpotent locus of the Lie
algebra.

(c) To show the assertion of Section 0.3(c), we prove the �niteness properties of the Grothendieck�
Springer �bration p•, mimicking the Lie algebra case.

(d) Since SL,• is perverse and the functor of τ -coinvariants is right t-exact, to show the perversity
of SL,•,τ it su�ces to show that SL,•,τ ∈ pD≥0([C•/LG]). Moreover, using Section 0.3(c), we show
that it su�ces to prove that for every γ ∈ C•(k), we have an inclusion

(0.1) RΓc(Flγ , ωL)τ ∈ D≥−dγ ,

where Flγ denotes the a�ne Springer �ber, RΓc(Flγ , ωL)τ denotes the τ -coinvariants of the coho-
mology with compact support of the pullback of ωT ⊗ L, and dγ is an explicit integer.

Finally, we deduce the inclusion (0.1) from the group analog [BV, Theorem 2.3.4] of a theorem
of Yun [Yun2] on the compatibility of actions.

1In [BKV] we forgot to impose this condition (see footnote after the formulation of Theorem 2.1.3 below).
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0.6. Remark. Though we knew for a long time that the perversity of SL,•,τ follows from inclusion
(0.1) and that inclusion (0.1) should follow from the theorem of Yun, we were able to complete the
proof of inclusion (0.1) only recently. The missing step was Proposition 1.4.3, and it was motivated
by a nice trick explained to us by Zhiwei Yun.

0.7. Relation to character sheaves. (a) Perverse sheaves SfinL,τ provide examples of Lusztig's
character sheaves, which play an important role in the representation theory of �nite groups of Lie
type.

(b) Likewise we expect that perverse sheaves SL,•,τ provide examples of a�ne character sheaves,
whose general de�nition is currently unknown, but which are expected to play a similarly important
role in the representation theory of p-adic groups (compare Section 0.8 below).

0.8. Relation to local Langlands conjectures and stability. (a) The local Langlands conjec-
ture predicts that the set of isomorphism classes of smooth irreducible representations of G(Fq((t)))
has a natural partition into �nite subsets Πλ, called L-packets.

(b) Moreover, it is expected that the linear span Span{χπ}π∈Πλ
of characters of π ∈ Πλ has

another basis {χκλ}κ such that each χκλ is �Eλ,κ-stable�. Furthermore, it is expected that the χκλ's
are obtained from perverse (a�ne character) sheaves on [LG/LG] by the �sheaf-function corre-
spondence�.

(c) Using results of [BV], the perversity of SL,•,τ implies a version of the conjecture from part (b)
for L-packets of cuspidal Deligne�Lusztig representations, introduced in [KV].

0.9. Plan of the paper. The paper is organized as follows:

In the Section 1 we carry out geometric preliminaries: First, in Section 1.1, we recall various
notions from [BKV], including placid ∞-stacks, placidly strati�ed ∞-stacks and small morphisms.
Next, in Section 1.2, we introduce Γ-constructible and essentially constructible sheaves on ∞-
stacks and study their properties. We also introduce a subclass of placid ∞-stacks, which we
call admissible. Then, in Section 1.3, we recall a construction of perverse t-structures on placidly
strati�ed∞-stacks, introduced and studied in [BKV], and give several criteria we need later. Finally,
in Section 1.4, we show several simple properties of quasi-coherent sheaves, which play a central
role in the proof of our main theorem.

In Section 2, we prove group analogs of some of the results of [BKV]: First, in Section 2.1, we
show �atness of the Chevalley map for truncated arc spaces, deducing it from its analog for Lie
algebras. Next, in Section 2.2, we introduce a GKM-strati�cation and give a proof of a formula
for the codimension of strata, which is much shorter than the original one. Finally, in Section 2.3,
we study basic properties of the a�ne Grothendieck�Springer �bration, essentially mimicking the
corresponding assertions for Lie algebras.

In Section 3, we introduce a�ne Grothendieck�Springer sheaves SL,• and study their properties.

First, in Section 3.1, we show that each SL,• is perverse, equipped with a natural W̃ -action and
that the induced action on homologies of a�ne Springer �bers coincides with the action constructed
by Lusztig. Finally, in Section 3.2, we show the main result of this work asserting that sheaves of
τ -coinvariants SL,•,τ are perverse. For completeness, we also show the corresponding assertion for
Lie algebras, whose proof is almost identical.

0.10. Acknowledgments. We thank Zhiwei Yun who explained to us a nice simple trick, which
was crucial for the proof of our main theorem. We also thank an anonymous referee for useful
comments.
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It is our pleasure and honor to dedicate this paper to Gérard Laumon. Over the years, A. B. has
greatly bene�ted from Gérard's support, enthusiasm and insight. Through his work, his students,
and his personal qualities, Gérard has developed a wide network of knowledge and friendship that
will last for many years to come. As used to say Grégoire de Nysse: �Celui qui s'élève, il va de
commencement en commencement, par des commencements qui n'ont jamais de �n�. Merci Gérard.

1. Geometric preliminaries.

1.1. Placid stacks and small morphisms. In this section we recall certain construction from [BKV].

1.1.1. In�nity-stacks. Let k be an algebraically closed �eld.

(a) Let Schk,Affk and AlgSpk be the categories of schemes, a�ne schemes and algebraic spaces

over k, respectively, let Schftk ,Aff ft
k and AlgSpftk be the subcategories of schemes, a�ne schemes

and algebraic spaces of �nite type over k, and let S be the ∞-category of spaces, which are often
referred as ∞-groupoids.

(b) We denote by PreStk the ∞-category of S-valued presheaves on Affk, that is, of functors of
∞-categories Affop

k → S, usually called ∞-prestacks over k. We denote by Stk ⊆ PreStk the full
∞-subcategory of sheaves in the étale topology Affop

k → S, called ∞-stacks.

(c) We call a morphism X → Y of ∞-stacks a covering, if it is a surjective map of sheaves.
Explicitly, this means that for every morphism Y → Y with Y ∈ Affk there exists an étale covering
X → Y of (a�ne) schemes such that the composition X → Y → Y has a lift X → X .

(d) Generalizing classical construction for (a�ne) schemes, to every∞-stack X one can associate
its reduction Xred (see [BKV, Section 1.4]). As in [BKV, Section 1.5.1], we say that a morphism
between ∞-stacks f : X → Y is a topological equivalence, if the induced morphism Xred → Yred
between reductions is an isomorphism.2

(e) As in [BKV, Section 2.4.1], for every ∞-stack X and an ∞-substack Y ⊆ X , one can form
the complementary ∞-substack X ∖ Y ⊆ X .

(f) For an ∞-stack X and a point x ∈ X (k), we denote by ιx the corresponding morphism
pt := Spec k → X .

1.1.2. Classes of morphisms.

(a) Let (P ) be a class of morphisms f : X → Y with X ∈ Stk and Y ∈ Affk, stable under base
change. We say that a morphism between ∞-stacks belongs to (P ), if its pullback to any a�ne
scheme belong to (P ).

(b) Using construction of part (a), we can talk about representable morphisms (corresponding to
the class of all morphisms X → Y with X ∈ AlgSpk), representable (locally)-fp morphisms (where
fp stands for �nitely-presented), and fp-open/(locally) closed embeddings between ∞-stacks.

(c) We say that a morphism f : X → Y with X ∈ Stk and Y ∈ Affk is ind-fp-proper, if X has a
presentation as a �ltered colimit X ≃ colimαXα such that Xα ∈ AlgSpk for all α, each Xα → Y
is fp-proper, and each transition map Xα → Xβ is an fp-closed embedding. Moreover, using the
construction of part (a) we can talk about ind-fp-proper morphisms between ∞-stacks.

(d) We say that an ∞-substack Y ⊆ X is topologically fp-(locally) closed, if for every morphism
X → X with X ∈ Affk there exists an fp-(locally) closed subscheme Y ⊆ X and an isomorphism
Yred ≃ (Y ×X X)red over X.

2It is more natural to require that the induced map Xperf → Yperf is an isomorphism, but this more general

notion is not needed for our purposes.
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1.1.3. Constructible strati�cations (compare [BKV, Section 2.4.5]).

Let X be an ∞-stack, let {Xα}α∈I be a collection of non-empty topologically fp-locally closed
reduced∞-substacks of X with Xα∩Xβ = ∅, and denote by ηα : Xα ↪→ X the inclusion morphisms.

(a) We say that the collection {Xα}α∈I forms a �nite constructible strati�cation of X , if I is �nite
and there exists an ordering α1 < · · · < αn of I and an increasing sequence of fp-open∞-substacks
∅ = X0 ⊆ · · · ⊆ Xn = X of X such that for every i = 1, . . . , n we have Xαi

⊆ Xi ∖ Xi−1 and the
embedding Xαi ↪→ Xi ∖ Xi−1 is a topological equivalence.

(b) For an ∞-substack Y of X , we say that Y is {Xα}α∈I-adapted, if for every α ∈ I, we have
either Y ∩ Xα = ∅ or Xα ⊆ Y. In which case, we set IY := {α ∈ I | Xα ∩ Y ̸= ∅}.

(c) We say that {Xα}α∈I forms a bounded constructible strati�cation of X , if there exists a
presentation X ≃ colimU XU as a �ltered colimit such that each XU ⊆ X is an fp-open {Xα}α∈I-
adapted ∞-substack and the collection {Xα}α∈IXU

forms a �nite constructible strati�cation of
XU .

(d) Let f : Y → X be a morphism of∞-stacks. Then a �nite/bounded constructible strati�cation
{Xα}α∈I of X induces a corresponding strati�cation {Yα := f−1(Xα)red}α∈I,Yα ̸=∅ of Y.

1.1.4. Placid ∞-stacks and smooth morphisms.

(a) We say that a k-scheme X has a placid presentation, if X has a presentation as a �ltered

limit X ≃ limαXα such that Xα ∈ Schftk for all α and all transition maps Xβ → Xα are smooth
and a�ne. Such a presentation will be called placid.

(b) We call a morphism f : X → Y of k-schemes strongly pro-smooth, if X has a presentation
as a �ltered limit X ≃ limαXα over Y , where all morphisms Xα → Y are smooth and �nitely
presented, while all projections Xβ → Xα are smooth, �nitely presented and a�ne.

(c) We call a k-scheme X placid, if it has an étale covering by schemes admitting placid presen-
tations. We call a morphism f : X → Y of placid k-schemes smooth, if locally in the étale topology
it is a strongly pro-smooth morphism of schemes.3

(d) More generally, following [BKV, Section 1.3.1], we de�ne a collection of placid ∞-stacks and
a collection smooth morphisms between placid ∞-stacks, containing placid schemes and smooth
morphisms from part (c). By de�nition, for every placid ∞-stack X , there is a smooth covering
X → X from a placid scheme X.

(e) A placid ∞-stack X will be called smooth, if the structure morphism X → pt is smooth.

1.1.5. Examples.

(a) Let G be a group scheme over k, whose neutral connected component is strongly pro-smooth,
acting on a placid scheme X. Then the quotient stack X = [X/G] is placid, and the projection
X → X is a smooth covering (see [BKV, Section 1.3.9]). Moreover, all placid ∞-stacks appearing
in this work are of this form.

(b) It follows from [BKV, Lemma 1.3.6(c)] that if f : X → Y is a locally fp-morphism between
placid ∞-stacks such that Y is placid, then X is placid. Also, by [BKV, Corollary 1.4.5(b)], in this
case the reduction Xred is placid and the embedding Xred → X is fp-closed.

(c) Using results of part (b) one deduces that if Y is a placid∞ stack and X ⊆ Y is a topologically
fp-(locally) closed reduced ∞-substack, then X ⊆ Y is fp-(locally) closed and X is placid.

3As in [BKV], our smooth morphisms are not assumed to be locally �nitely presented.
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1.1.6. Underlying topological space (compare [BKV, Section 2.2.1]).

(a) Generalizing the classical notion for schemes, to every ∞-stack X , one associates the under-
lying topological space [X ] such that

• the underlying set is de�ned to be the set of equivalent classes of pairs (K, [z]), where
K/k is a �eld extension, [z] ∈ π0(X (K)), and (K ′, [z′]) ∼ (K ′′, [z′′]), if there exist �eld embeddings
K ′ ↪→ K and K ′′ ↪→ K such that [z′] and [z′′] have the same image in π0(X (K)).

• a subset U ⊆ [X ] is open, if U = [U ] for some open ∞-substack U ⊆ X .
(b) Every morphism f : X → Y of ∞-stacks induces a continuous map [f ] : [X ] → [Y] of

topological spaces. We call a morphism f : X → Y of ∞-stacks open, if the induced map [f ] is
open. We call f universally open, if every pullback X ×Y Z → Z of f is open.

(c) To simplify the notation, we will often denote the topological space [X ] by X and the map
[f ] by f .

1.1.7. Dimension function.

(a) For every X ∈ Schftk and x ∈ X, we denote by dimx(X) the maximum of dimensions of
irreducible components of X, containing x.

(b) Following [BKV, Lemmas 2.2.4�2.2.5], to every locally fp-representable morphism f : X → Y
between placid ∞-stacks one can associate a dimension function dimf : [X ] → Z. Namely, it is
uniquely characterised by the following properties:

(i) if X ,Y ∈ Schftk , then we have dimf (x) = dimx(X )− dimf(x)(Y) for every x ∈ [X ];
(ii) For every Cartesian diagram of placid ∞-stacks

X ′ f ′

−−−−→ Y ′

h

y yg
X f−−−−→ Y

such that g and h are smooth and every x′ ∈ [X ′], we have an equality dimf ′(x′) = dimf (h(x));

(iii) for every étale schematic morphism g : Z → X between placid ∞-stacks and every
z ∈ [Z], we have an equality dimf◦g(z) = dimf (g(z)).

1.1.8. Equidimensional morphisms (compare [BKV, Section 2.2.6]).

(a) A locally fp-representable morphism f : X → Y of placid ∞-stacks is called

• weakly equidimensional (of relative dimension d), if the dimension function dimf : [X ]→ Z
from Section 1.1.7 is locally constant (constant with value d);

• equidimensional, if it is weakly equidimensional and satis�es dimf (x) = dimx f
−1(f(x))

for every x ∈ [X ];
• uo-equidimensional, if it weakly equidimensional and universally open (see Section 1.1.6(b)).

(b) By [BKV, Corollary 2.3.6], a uo-equidimensional morphism is equidimensional.

(c) We say that an fp-locally closed ∞-substack X ⊆ Y of a placid ∞-stack Y is of (pure)
codimension d and write codimX (Y) = d, if the inclusion X ↪→ Y is weakly equidimensional of
relative dimension −d.
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1.1.9. Placidly strati�ed ∞-stacks.
(a) We say that an ∞-stack Y is I-strati�ed, if it is equipped with a bounded constructible

strati�cation {Yα}α∈I (see Section 1.1.3).

(b) We say that an I-strati�ed∞-stack (Y, {Yα}α∈I) is placidly strati�ed, if every Yα is a placid
∞-stack (see Section 1.1.4(d)).

1.1.10. Small morphisms (compare [BKV, Section 2.4.9]).

(a) Let (Y, {Yα}α∈I) be a placidly strati�ed ∞-stack, U ⊆ Y an fp-open {Yα}α∈I-adapted
∞-substack, f : X → Y a morphism of ∞-stacks, {Xα}α the induced bounded constructible
strati�cation of X (see Section 1.1.3(d)), and denote by fα : Xα → Yα the restriction of f .

(b) In the situation of part (a), assume that X is placid. Then, by Section 1.1.5(c), each Xα ⊆ X
is a placid fp-locally closed ∞-substack.

(c) In the situation of part (b), we say that f is U-small if for every α ∈ I there exist integers
bα, δα ∈ N such that

(i) each Xα ⊆ X is of pure codimension bα;

(ii) each fα is locally fp-representable and equidimensional of relative dimension δα;

(iii) for every α ∈ I, one has δα ≤ bα, with a strict inequality for α ∈ I ∖ IU .
1.2. Γ-constructible sheaves on ∞-stacks. In this section we will introduced Γ-constructible
sheaves on ∞-stacks and show their basic properties.

1.2.1. Sheaves on ∞-prestacks (compare [BKV, Sections 5.2.1, 5.2.2, 5.3.1]). Let ℓ be a prime,
di�erent from the characteristic of k.

(a) For an a�ne scheme Y ∈ Aff ft
k , we denote by Dc(Y ) := Dc(Y,Ql) the stable ∞-category of

constructible sheaves on Y . Then, for an a�ne scheme X over k, we set Dc(X) := colimX→Y Dc(Y ),

where the colimit is taken over all morphisms X → Y with Y ∈ Aff ft
k , and the transition maps are

!-pullbacks. Next, we set D(X) := IndDc(X).

(b) For an ∞-prestack X over k, we set Dc(X ) := limX→X Dc(X) and D(X ) := limX→X D(X),
where the limits are taken over all morphisms X → X with X a�ne, and the transition maps
are !-pullbacks. Notice that Dc(X ) ⊆ D(X ) is a full ∞-subcategory, and we call objects of Dc(X )
constructible. By construction, the ∞-category D(X ) is equipped with a !-tensor product.

(c) Notice that for every Y ∈ Schftk or, more generally, Y ∈ AlgSpftk the ∞-category Dc(Y ) is
naturally identi�es with the ∞-category of constructible sheaves on Y .

We will need the following generalization of constructible sheaves.

1.2.2. Essentially constructible sheaves.

(a) For an a�ne k-scheme X, we denote by Dess−c(X) ⊆ D(X) the smallest full ∞-subcategory,
which contains Dc(X) and is closed under retracts, �nite colimits and tensor products − ⊗Qℓ

V ,

where V is a Qℓ-vector space.
(b) For a morphism f : X → Y of a�ne k-schemes, the pullback f ! preserves the∞-subcategories

Dess−c(−) ⊆ D(−), so for an arbitrary ∞-prestack X , we can form a full ∞-subcategory

Dess−c(X ) := lim
X→X

Dess−c(X) ⊆ D(X ),

and call objects of Dess−c(X ) essentially constructible.

(c) By construction, for every morphism f : X → Y of ∞-prestacks, the pullback f ! preserves
the class of essentially constructible objects.
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Lemma 1.2.3. Let X ∈ Schftk and K ∈ D(X). Then we have K ∈ Dess−c(X) if and only if there
exists a �nite constructible strati�cation {Xα}α of X such that for each index α,

• only �nitely many of cohomologies Hi(η!α(K))'s are nonzero.

• each Hi(η!α(K)) is a �nite extension of L⊗Qℓ
V , where L is an irreducible constructible local

system on X, and V is a Qℓ-vector space.

Moreover, we can further assume that each Xα is connected smooth and a�ne, while each em-
bedding ηα : Xα → X is weakly equidimensional.

Proof. Let D′
ess−c(X) be the collection of all K ∈ D(X) such that there exists a �nite constructible

strati�cation {Xα}α of X satisfying the conditions of the lemma. Then D′
ess−c(X) contains Dc(X),

closed under retracts, �nite colimits and tensor products −⊗Qℓ
V and therefore contains Dess−c(X).

It remains to show that every K ∈ D′
ess−c(X) belongs to Dess−c(X). Since K is a �nite extension

of the (ηα)∗η
!
αK's, it su�ces to show that each (ηα)∗η

!
α(K) is essentially constructible. Next, since

each (ηα)∗ preserve constructibility, �nite colimits, retracts and commute with −⊗Ql
V , it preserves

essentially constructibility. So it su�ces to show that each η!α(K) is essentially constructible.
But this follows from the fact that each η!α(K) is a �nite extension of its shifted cohomologies
Hi(η!α(K))[−i] and de�nition of D′

ess−c(X).

Finally, to show the �moreover� assertion we argue similarly but use the fact that every con-
structible strati�cation {X ′

β}β has a re�nement {Xα}α such that each Xα is connected smooth and
a�ne, while each embedding ηα : Xα → X is weakly equidimensional. □

1.2.4. Admissible ∞-stacks.
(a) We call Y ∈ Aff ft

k acyclic, if the canonical morphism Qℓ → RΓ(Y,Qℓ) is an isomorphism.

(b) Following [BeKV1, Section 1.1.2], we call a k-scheme X admissible, if it admits a placid
presentationX ≃ limαXα such that all transition maps are smooth a�ne and have acyclic geometric
�bers, and we will call such presentation admissible.

(c) It follows from [BeKV1, Lemma 1.1.3] that a presentation X ≃ limαXα is admissible if and
only if the pullback π!

α : D(Xα) → D(X), corresponding to each projection πα : X → Xα, is fully
faithful.

(d) We call a placid ∞-stack admissible, if it has a smooth covering by a disjoint union of
admissible schemes.

(e) An argument of [BKV, Lemma 1.3.6(b)] shows that f : X → Y is an fp-morphism of k-
schemes such that Y is an admissible, then X is admissible.

Lemma 1.2.5. Let X be an a�ne k-scheme with an admissible presentation X ≃ limαXα. Then
every K ∈ Dess−c(X) is a pullback of some Kα ∈ Dess−c(Xα).

Proof. We denote by D′
ess−c(X) ⊆ Dess−c(X) the full ∞-subcategory, consisting of objects, which

are pullbacks of some Kα ∈ Dess−c(Xα). By de�nition, D′
ess−c(X) contains Dc(X) and is closed

under tensor products −⊗Ql
V . It remains to show that D′

ess−c(X) is closed under �nite colimits

and retracts. But this follows from the fact that the limit X ≃ limαXα is �ltered and each
π!
α : D(Xα)→ D(X) is fully faithful (see Section 1.2.4(c)). □

1.2.6. Categories of Γ-equivariant objects.
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(a) Let Γ be a (discrete) group, and let BΓ be the classifying space of Γ. For an ∞-category C,
we denote by CBΓ the ∞-category of functors BΓ→ C, and call it the ∞-category of Γ-equivariant
objects in C. Explicitly, objects of CBΓ are objects of C equipped with an action of Γ.

(b) The assignment C 7→ CBΓ is functorial in Γ. In particular, for every homomorphism of groups

α : Γ1 → Γ2, we have a restriction functor resΓ1

Γ2
= α∗ : CBΓ2 → CBΓ1 , whose left adjoint we denote

by indΓ2

Γ1
= α! (if exists). Notice that α! always exists, if C is cocomplete, that is, has all small

colimits.

(c) An important particular case is when α is the projection Γ → {1}. In this case, α! is the
functor of coinvariants coinvΓ. Another important particular case is when α is the embedding
{1} → Γ. In this case, α∗ is the forgetful functor For, and α! is the functor Free.

(d) The assignment C → CBΓ is functorial in C. In particular, every functor f : C1 → C2 of
∞-categories naturally lifts to a functor f : CBΓ

1 → CBΓ
2 . Moreover, f commutes with functors

α∗ from part (b). Furthermore, f commutes with functors α!, if C1 and C2 are cocomplete and f
preserves all small colimits.

1.2.7. Basic example. Let C be the derived∞-category Vect of Ql-vector spaces. In this case, the
∞-category CBΓ is naturally identi�ed with the derived∞-category D(Ql[Γ]) of (left) Ql[Γ]-modules
or, what is the same, of representations of Γ over Ql.

1.2.8. Functor of τ-coinvariants.

(a) Let C be a Ql-tensored stable ∞-category. Then the tensor product functor

⊗Ql
: Vect×C → C : (V,K) 7→ V ⊗Ql

K

de�nes a functor ⊗Ql
: VectBΓ×CBΓ ≃ (Vect×C)BΓ → CBΓ.

(b) Assume in addition that C is cocomplete. Then (by Sections 1.2.6(c) and 1.2.7) for every
τ ∈ RepQl

(Γ) and K ∈ CBΓ, one can form τ -coinvariants

Kτ = coinvτ (K) := coinvΓ(τ ⊗Ql
K) ∈ C.

(c) The assignment coinvτ is functorial in C. Namely, let f : C1 → C2 be a Ql-tensored functor
between cocomplete Ql-tensored stable ∞-categories. Then f induces a functor f : CBΓ

1 → CBΓ
2 ,

and for every K ∈ CBΓ
1 we have an identi�cation f(K)τ ≃ f(Kτ ).

(d) Assume that C = Vect. Then every τ ∈ RepQl
(Γ) can be viewed as a right Ql[Γ]-module

(using involution ι : γ 7→ γ−1 of Γ). Moreover, for every V ∈ Vect, we have an identi�cation
Vτ ≃ τ ⊗Ql[Γ]

V . Moreover, a similar formula holds for an arbitrary C.

1.2.9. Equivariant sheaves.

(a) Let X be an ∞-stack, equipped with an action of a group ∞-stack G, and we denote by p
the projection X → [X/G]. We set DG(X ) := D([X/G]), refer to objects of DG(X ) as G-equivariant
sheaves on X and view the pullback p! as the forgetful functor.

(b) Notice that if G is a (discrete) group Γ, then the projection p : X → [X/Γ] is ind-fp-proper
(see [BKV, Section 5.6.4]), thus a pullback p! has a left adjoint p! commuting with base change (see
[BKV, Proposition 5.3.7]).

1.2.10. The case of a trivial action. Let X be an ∞-stack.
10



(a) For every group Γ, we equip X with the trivial action of Γ. Then, using standard bar-
resolution argument, there is a natural equivalence between the∞-categoryD(X )BΓ of Γ-equivariant
objects of D(X) and the ∞-category D([X/Γ]) of Γ-equivariant sheaves on X .

(b) A group homomorphism α : Γ1 → Γ2 induces a morphism of ∞-stacks α : [X/Γ1]→ [X/Γ2].

Then, under the equivalence of part (a), the restriction resΓ1

Γ2
: D(X )BΓ2 → D(X )BΓ1 corresponds

to the pullback α! : D([X/Γ2]) → D([X/Γ1]), while the induction indΓ1

Γ2
: D(X )BΓ1 → D(X )BΓ2

corresponds to the pushforward α! : D([X/Γ1])→ D([X/Γ2]).

(c) In particular, the forgetful functor For : D(X )BΓ → D(X ) corresponds to the pullback
p! : D([X/Γ]) → D(X ), hence functor Free (see Section 1.2.6(c)) corresponds to the push-forward
p!, thus justifying the conventions of Section 1.2.9.

Lemma 1.2.11. Let X be an ∞-stack equipped with an action of a group Γ, and let p be the
projection X → Y := [X/Γ]. Then

(a) For every K ∈ D(Y), the object p!p
!K ∈ D(Y) has a natural lift K̃ ∈ D(Y)BΓ and satis�es

coinvΓ(K̃) ≃ K ∈ D(Y).

(b) Moreover, for every representation τ ∈ RepQl
(Γ), we have a natural isomorphism

coinvτ (K̃) ≃ Aτ
!
⊗K,

where Aτ = pr!(τ), pr : [X/Γ]→ [pt /Γ] is the canonical projection corresponding to the projection
X → pt, and we identify τ with the corresponding object of D([pt /Γ]).

Proof. (a) Projection p gives rise to a Cartesian diagram

X p−−−−→ Y

p

y yp
Y = [X/Γ] p−−−−→ [Y/Γ],

where Γ acts on Y trivially, and p is induced by p. Then, by base change, we get a canonical

isomorphism p!p
!K ≃ p!(p!K), thus K̃ := p!K ∈ D([Y/Γ]) ≃ D(Y)BΓ is a lift of p!p

!K.
Moreover, under the identi�cation D([Y/Γ]) ≃ D(Y)BΓ, the functor coinvΓ corresponds to the

push-forward π! : D([Y/Γ]) → D(Y), corresponding to the projection π : [Y/Γ] → Y. Since

π ◦ p ≃ Id, the isomorphism coinvΓ(K̃) = coinvΓ(p!K) ≃ K follows.

(b) By de�nitions, we have coinvτ (K̃) ≃ coinvΓ(τ ⊗Ql
K̃), and τ ⊗Ql

K̃ ≃ pr!(τ)
!
⊗ K̃, where

pr : [Y/Γ]→ [pt /Γ] is the projection induced by the projection Y → pt. Moreover, we have

pr!(τ)
!
⊗ K̃ = pr!(τ)

!
⊗ p!(K) ≃ p!(p!pr!(τ))

!
⊗K) ≃ p!(pr!(τ)

!
⊗K) = p!(Aτ

!
⊗K)

by the projection formula. Hence, as in part (a), we conclude that

coinvτ (K̃) ≃ coinvΓ(p!(Aτ
!
⊗K)) ≃ Aτ

!
⊗K.

□

1.2.12. Γ-constructible sheaves. Assume that we are in the situation of Section 1.2.10.

(a) For every X ∈ Affk, we denote by DΓ,c(X) ⊆ DΓ(X) the full ∞-subcategory of compact
objects. Alternatively, DΓ,c(X) ⊆ DΓ(X) can be described the smallest ∞-subcategory, which
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contains objects Free(K) for K ∈ Dc(X) and is stable under �nite colimits and retracts. Objects
of DΓ,c(X) will be called Γ-constructible. Notice that for every morphism f : X → Y of a�ne
schemes, the pullback f ! : DΓ(Y )→ DΓ(X) preserves DΓ,c(−) ⊆ DΓ(−).

(b) The assignment C 7→ CBΓ commutes with limits. Therefore for every ∞-stack X , the ∞-
category DΓ(X ) is naturally identi�ed with a limit limX→X DΓ(X), taken over maps from a�ne
schemes X. Hence, using part (a), we de�ne the full ∞-subcategory

DΓ,c(X ) := lim
X→X

DΓ,c(X) ⊆ D(X ).

1.2.13. Examples. (a) Let X = pt. Then, by Sections 1.2.7 and 1.2.10(a), the∞-category DΓ(pt)
is identi�ed with the derived ∞-category D(Ql[Γ]) of Ql[Γ]-modules. Under this identi�cation,
DΓ,c(pt) corresponds to the subcategory Dperf(Ql[Γ]) ⊆ D(Ql[Γ]) of perfect complexes.

(b) Note that if A is a Noetherian ring of �nite cohomological dimension, then an object V ∈ D(A)
is perfect if and only if the direct sum of cohomology groups

⊕
iH

i(V ) is a �nitely generated A-
module.

1.2.14. Functoriality properties. Let X be an ∞-stack.

(a) For every group homomorphism α : Γ1 → Γ2, the induction functor α! : DΓ1(X ) → DΓ2(X )
maps DΓ1,c(X ) to DΓ2,c(X ). Indeed, since α! commutes with !-pullbacks, we have to show the
assertion when X is an a�ne scheme X. In this case, the assertion follows from the fact that the
pushforward α! : DΓ1(X)→ DΓ2(X) preserves compact objects.

(b) The forgetful map For : DΓ(X ) → D(X ) maps DΓ,c(X ) to Dess−c(X ). Indeed, arguing
as in part (a), we can assume that X is an a�ne scheme X. Thus, it su�ces to show that for
every K ∈ Dc(X) we have For(Free(K)) ∈ Dess−c(X). But this follows from the isomorphism
For(Free(K)) ≃ Ql[Γ]⊗Ql

K.

Lemma 1.2.15. Let X be an ∞-stack, let Γ be a group, and let K ∈ DΓ(X ).
(a) Let {Xα}α be a bounded constructible strati�cation of X . Then we have K ∈ DΓ,c(X ) if and

only if η!α(K) ∈ DΓ,c(Xα) for all α.

(b) Let f : Y → X be a covering of ∞-stacks. Then we have K ∈ DΓ,c(X ) if and only if

f !K ∈ DΓ,c(Y).
(c) If K ∈ DΓ,c(X ), then for every τ ∈ RepQl

(Γ), we have Kτ ∈ Dess−c(X ). Moreover, we have

Kτ ∈ Dc(X ), if τ is �nite-dimensional.

Proof. (a) The �only if� assertion follows from the fact that the !-pullbacks preserve DΓ,c. For
the converse, choose a presentation X = colimU XU as in Section 1.1.3(c). Since every morphism
X → X from an a�ne scheme X factors through some XU , we conclude that K ∈ DΓ,c(X ) if and
only if K|XU

∈ DΓ,c(XU ) for all U . Thus, replacing X and K by XU and K|XU
, we can assume that

the strati�cation is �nite.
Next, taking pullback to an a�ne scheme, we can assume that X is an a�ne scheme. Since

K is a �nite extension of the (ηα)∗η
!
α(K)'s, it remains to show that functors (ηα)∗ preserve Γ-

constructibility. If Xα is a�ne, the assertion follows from the fact that (ηα)∗ preserve compact
objects. To show the general case, choose a �nite constructible strati�cation {Xβ}β of Xα by a�ne
schemes and let ηβ be the composition Xβ ↪→ Xα ↪→ X. Then the assertion for (ηα)∗ follows from
that for the (ηβ)∗'s.

(b) By construction, the !-pullbacks preserves DΓ,c. To show the converse assertion, notice that
for every morphism X → X from an a�ne scheme X there exists an étale covering Y → X such
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that the composition Y → X → X has a lift Y → Y. Thus, it su�ces to show the assertion when
f : Y → X is an étale covering of a�ne schemes. Then f is �nitely-presented, so there exists a
�nite constructible strati�cation {Xα}α of X such that each Yα := f−1(Xα) → Xα is �nite étale.
Thus, by part (a), we can assume that f is �nite étale. In this case, the assertion follows from the
fact that K is a retract of f!f

!(K).

(c) Since coinvτ commutes with !-pullbacks, we can assume that X is an a�ne scheme and

K = Free(K ′) for some K ′ ∈ Dc(X). Using isomorphisms τ ⊗Ql
Free(K ′) ≃ Free(Qdim τ

l ⊗Ql
K) and

coinvΓ ◦Free ≃ Id, we conclude that in this case we have coinvτ (K) ≃ Qdim τ

l ⊗Ql
K, from which

the assertion follows. □

Lemma 1.2.16. Let f : X → S a morphism of schemes, let Γ be a group acting on X over S such
that Y := [X/Γ] is an algebraic space, fp-proper over S. Then the pushforward f! : D(X) → D(S)
exists, and for every K ∈ D(Y ), the object f!(p

!K) ∈ D(S) has a natural lift to DΓ(S). Moreover,
this lift belongs to DΓ,c(S) if K ∈ Dc(Y ).

Proof. Morphism f gives rise to a Cartesian diagram

X
f−−−−→ S

p

y yp
Y = [X/Γ]

f−−−−→ [S/Γ],

where Γ acts on S trivially. Moreover, morphisms f and f decomposes as X
p→ Y

g→ S and

Y
g→ S

p→ [S/Γ], respectively, and morphism g : Y → S is fp-proper. By [BKV, Proposition 5.2.5],
our assumption on g implies that g! has a left adjoint g!, from which the existence of f! and f !
follow.

Moreover, since p is étale, we have an isomorphism f!(p
!K) ≃ p!(f !K), thus f!(p

!K) ∈ D(S)
has a natural lift f !K ∈ D([S/Γ]) ≃ DΓ(S). Finally, if K ∈ Dc(Y ), then g!K ∈ Dc(S), thus
f !K = p!(g!K) ∈ DΓ,c(S). □

Proposition 1.2.17. Let X be an admissible∞-stack, let Γ be a group such that Ql[Γ] is Noetherian
of �nite cohomological dimension, and let K ∈ DΓ(X ). Then we have K ∈ DΓ,c(X ) if and only if

we have For(K) ∈ Dess−c(X ) and ι!xK ∈ DΓ,c(pt) = Dperf(Ql[Γ]) for every x ∈ X (k).

Proof. By Lemma 1.2.15(b), we can assume that X is an admissible a�ne scheme X.

Assume �rst X is of �nite type over k. If K ∈ DΓ,c(X), then For(K) ∈ Dess−c(X) by Sec-
tion 1.2.14(b), and each ι!xK ∈ DΓ,c(pt) because ι

!
x preserves Γ-constructibility. Conversely, assume

that K := For(K) ∈ Dess−c(X) and ι!xK ∈ Dperf(Ql[Γ]) for every x ∈ X(k).

By Lemma 1.2.15(a), it su�ces to show that there exists a �nite constructible strati�cation
{Xα}α of X such that η!αK ∈ DΓ,c(Xα) for all α. Thus, by Lemma 1.2.3, we can replace K by

η!α(K), thus assuming that X is smooth connected, K ∈ Db(X) and each Hi(K) is a �nite extension
of the L ⊗Ql

V 's, where L is an irreducible constructible local system on X and V is a Ql-vector
space.

Since Ql[Γ] is Noetherian of �nite cohomological dimension, we have ι!xK ∈ Dperf(Ql[Γ]) if and
only if

⊕
iH

i(ι!xK) is a �nitely generated Ql[Γ]-module. Since K is a �nite extension of its shifted
cohomologies, and ι!x[−2 dimX] ≃ ι∗x is exact, we can replace K by

⊕
iHi(K), thus assuming that
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K = For(K) is a �nite extension of the L⊗Ql
V 's, where L is a simple (constructible) local system

on X and V is a Ql-vector space.
In this case, K has a canonical �nite increasing �ltration {K≤i}i, de�ned by the property that

K≤i+1/K≤i is the largest semisimple local subsystem of For(K)/For(K)≤i. In particular, each

K≤i is Γ-invariant, so �ltration {K≤i}i gives rise to a �ltration {K≤i}i of K.

Replacing K by its graded piece gri(K), we can assume that K is semisimple and has only many
simple factors. In this case, K decomposes as a �nite direct sum

⊕
LKL, where L runs over the

set of isomorphism classes of simple local systems L on X, and KL := Hom(L,K)⊗Ql
L. Now our

assumption that each Hi(ι!xK) is a �nitely generated Ql[Γ]-module implies that each Hom(L,K)
is a �nitely generated Ql[Γ]-module. Thus KL ∈ DΓ,c(X) for all L, hence K ∈ DΓ,c(X).

In the general case, choose an admissible presentation X ≃ limαXα. Then For(K) is a pullback
of For(K)α ∈ Dess−c(Xα) ⊆ D(Xα) for some α (by Lemma 1.2.5). Next, using the fact that the
pullback π!

α : D(Xα)→ D(X) is fully faithful, we conclude that the natural functor

DΓ(Xα)→ D(Xα)×D(X) DΓ(X)

is an equivalence. Thus, K is a pullback of a unique object Kα ∈ DΓ(Xα) such that

For(Kα) ≃ For(K)α ∈ Dess−c(Xα).

Since presentation X ≃ limαXα is admissible, the projection πα : X(k) → Xα(k) is surjective.
Hence, our assumption implies that ι!xα

(Kα) ∈ DΓ,c(pt) for every xα ∈ Xα(k). Then, we get

Kα ∈ DΓ,c(Xα) (by the particular case shown above), hence K = π!
α(Kα) ∈ DΓ,c(X). □

1.3. Perverse t-structures.

1.3.1. Perverse t-structures on Dc(X). Following [BKV, Section 6.2.3], for every X ∈ Schftk we
equip the∞-categoryDc(X) with a canonical (!-adapted) perverse t-structure (pD≤0

c (X), pD≥0
c (X)):

(a) If X is equidimensional, we equip Dc(X) with the t-structure (pD≤0
c (X), pD≥0

c (X)), obtained
from the classical (middle-dimensional) perverse t-structure by shifting it by dimX to the left.

(b) For a general X, consider �nite constructible strati�cation Xi := {x ∈ X | dimx(X) = i} (see
[BKV, Section 2.1.1]). Then each Xi is equidimensional of dimension i, and we denote the inclusion
Xi ↪→ X by ηi. We de�ne (pD≤0

c (X), pD≥0(X)) to be the t-structure on Dc(X), obtained from
the t-structures (pD≤0

c (Xi),
pD≥0

c (Xi)) from part (a) by gluing. Explicitly, we de�ne pD≤0
c (X)

(resp. pD≥0
c (X)) to be the collection of all K ∈ Dc(X) such that η∗i (K) ∈ pD≤0

c (Xi) (resp.
η!i(K) ∈ pD≥0

c (Xi)) for all i.

(c) By [BKV, Lemma 6.2.5(c)], for every smooth morphism f : X → Y , the pullback f ! is t-exact.

1.3.2. Perverse t-structures on placid ∞-stacks.
(a) Following [BKV], for every placid ∞-stack X we equip the ∞-category D(X ) with a canoni-

cal perverse t-structure (pD≤0(X ), pD≥0(X )). Namely, using [BKV, Lemma 6.1.2(a) and Proposi-
tions 6.3.1, 6.3.3] it can be uniquely characterised by the following properties:

(i) when X ∈ Schftk , then (pD≤0(X ), pD≥0(X )) extends the t-structure (pD≤0
c (X ), pD≥0

c (X ))
on Dc(X ) described in Section 1.3.1(b);

(ii) for every smooth morphism f : X → Y of placid ∞-stacks, the pullback f ! is t-exact;

(iii) the t-structure (pD≤0(X ), pD≥0(X )) is compatible with �ltered colimits, that is, the ∞-
subcategory pD≥0(X ) ⊆ D(X ) is closed under �ltered colimits.
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(b) By [BKV, Section 5.3.1(e) and Lemma 6.1.2(d)], we conclude that for every smooth covering
f : X → Y of placid∞-stacks and K ∈ D(X ) we have K ∈ pD≥0(X ) if and only if f !K ∈ pD≥0(Y).
Lemma 1.3.3. Assume that X ∈ Schftk is equipped with a �nite constructible strati�cation {Xα}α
such that each Xα ⊆ X is of pure codimension dα, let ηα : Xα ↪→ X be the inclusion maps, and let
K ∈ D(X). Then we have K ∈ pD≤0(X) (resp. K ∈ pD≥0(X)) if and only if η∗αK ∈ pD≤−dα(Xα)
(resp. η!αKα ∈ pD≥−dα(Xα)) for all α.

Proof. The �only if� assertion follows from the fact that functor η∗α[−dα] is right t-exact, while
functor η!α[−dα] is left t-exact (see [BKV, Lemma 6.2.5(b)]). By adjointness, functor (ηα)![dα] is
right t-exact, while functor (ηα)∗[dα] is left t-exact. From this the �if� assertion follows. Indeed, if
η!αK ∈ pD≥−dα(Xα) for all α, then (ηα)∗η

!
αK ∈ pD≥0(X) for all α. Since K is a �nite extension of

the (ηα)∗η
!
αK's, we conclude that K ∈ pD≥0(X). The assertion for pD≤0(X) is similar. □

Proposition 1.3.4. Let X be an admissible ∞-stack (see Section 1.2.4), and we equip D(X ) with
its canonical perverse t-structure (see Section 1.3.2). Let K ∈ Dess−c(X ) be such that for every
x ∈ X (k), we have ι!xK ∈ pD≥0(pt). Then K ∈ pD≥0(X ).
Proof. By Section 1.3.2(b), we can assume that X is an a�ne admissible k-scheme X.

Assume �rst that X is of �nite type over k. By Lemma 1.2.3, there exists a �nite constructible
strati�cation {Xα}α of X such that each Xα is smooth connected, each inclusion ηα : Xα ↪→ X
is weakly equidimensional of relative dimension −dα and all cohomology sheaves Hi(Kα) of all
Kα := η!αK are local systems.

By Lemma 1.3.3, we have K ∈ pD≥0(X) if and only if Kα ∈ pD≥−dα(Xα) for all α. In particular,
it su�ces to show that Kα ∈ pD≥0(Xα) for all α. Thus, replacing X by Xα and K by Kα, we can
assume that X is smooth connected and all cohomology sheaves Hi(K) are local systems. Then
our assumption that ι!xK ≃ ι∗xK[2 dimX] ∈ pD≥0(pt) implies that K ∈ D≥−2 dimX(X), where
D≥−2 dimX refers to the usual (rather than perverse) t-structure. Since D≥−2 dimX(X) = pD≥0(X),
we are done.

For a general X, choose an admissible presentation X ≃ limαXα, with projections πα. Since
K ∈ Dess−c(X) we conclude from Lemma 1.2.5 that there exists an index α and Kα ∈ Dess−c(Xα)
such that K ≃ π!

αKα. Moreover, since the projection πα : X(k) → Xα(k) is surjective, our
assumption implies that ι!xα

(Kα) ∈ pD≥0(pt) for all xα ∈ Xα(k). Therefore, by the assertion for

Xα, shown above, we get Kα ∈ pD≥0(Xα). Since π
!
α is t-exact, the assertion follows. □

1.3.5. Perversity function.

(a) By a perversity on an I-strati�ed ∞-stack (Y, {Yα}α∈I) (see Section 1.1.9), we mean a
function pν : I → Z : α 7→ να, or, what is the same, a collection {να}α∈I of integers.

(b) Let f : X → Y be a morphism of∞-stacks, where X is a placid∞-stack, and (Y, {Yα}α∈I) is
a placidly strati�ed ∞-stack, satisfying assumptions (i) and (ii) of Section 1.1.10(c). Then f gives
rise to perversity pf := {να}α∈I , de�ned by να := bα + δα for all α ∈ I.
1.3.6. Perverse t-structures on placidly strati�ed ∞-stacks.

(a) Following [BKV, De�nition 5.5.1], we say that an ∞-stack Y admits gluing of sheaves, if for
every topologically fp-locally closed embedding η : X → Y, the pushforward η∗ : D(X ) → D(Y)
(see [BKV, Section 5.4.4]) admits a left adjoint η∗ : D(Y)→ D(X ).

(b) Let (Y, {Yα}α∈I) be a placidly strati�ed ∞-stack such that Y admits gluing of sheaves. As
every Yα is placid, every D(Yα) has a canonical perverse t-structure (pD≤0(Yα), pD≥0(Yα)) (see
Section 1.3.2). Since Y admits gluing of sheaves, we have pullback functors η∗α, η

!
α : D(Y)→ D(Yα).
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Then, by [BKV, Proposition 6.4.2], for every perversity function pν = {να}α∈I there exists a
unique t-structure (pνD≤0(Y), pνD≥0(Y)) on D(Y) such that

pνD≤0(Y) = {K ∈ D(Y) | η∗αK ∈ pD≤−να(Yα) for all α ∈ I},
pνD≥0(Y) = {K ∈ D(Y) | η!αK ∈ pD≥−να(Yα) for all α ∈ I}.

(c) We say that a sheaf K ∈ D(Y) is pν-perverse, if it is perverse with respect to perversity pν .

1.3.7. The intermediate extension. Suppose we are in the situation of Section 1.3.6(b), and
let U ⊆ Y be an fp-open ∞-substack.

(a) Then U ⊆ Y is equipped with a constructible strati�cation {Uα}α∈IU , where Uα := U ∩ Yα
for every α ∈ I and IU := {α ∈ I | Uα ̸= ∅}. Moreover, (U , {Uα}α∈IU ) is a placidly strati�ed
∞-stack.

(b) The perversity function pν : I → Z restricts to a perversity function pUν : IU → Z, thus gives
rise to a perverse t-structure (p

U
ν D≤0(U), pUν D≥0(U)) on D(U).

(c) For every pν-perverse sheaf K ∈ D(Y), its restriction K|U ∈ D(U) is pUν -perverse. Conversely,
for every pUν -perverse sheaf KU ∈ D(U) there exists a unique extension K ∈ D(Y) (called the
intermediate extension) such that K is pν-perverse and K does not have non-zero subobjects and
quotients supported on Y ∖ U (see [BKV, Corollary 6.4.9]).

1.3.8. !-local systems.

(a) For every ∞-prestack X , we de�ne a full subcategory Loc!(X ) ⊆ D(X ) of !-local systems
de�ned as follows:

• For Y ∈ Aff ft
k , we denote by Loc!(Y ) be the full ∞-subcategory of D(Y ) consisting of

objects ωY,L := ωY ⊗ L, where L is a usual (ind-constructible) local system on Y and ωY is a

dualizing complex. For every morphism f : Y ′ → Y of Aff ft
k , we have a natural isomorphism

f !(ωY,L) ≃ ωY ′,f∗ L, thus the class of !-local systems is closed under !-pullbacks.

• Next, for X ∈ Affk, we denote by Loc!(X) be the full ∞-subcategory of D(X) consisting of

objects f !K, where f : X → Y is a morphism with Y ∈ Aff ft
k and K ∈ Loc!(Y ). Finally, for an

arbitrary ∞-prestack X , we denote by Loc!(X ) be the full ∞-subcategory of D(X ) consisting of

objects K such that f !K ∈ Loc!(X) for every morphism f : X → X from an a�ne scheme X.

(b) By construction, the class of !-local systems is closed under !-pullbacks and !-tensor products.

In particular, for every morphism f : X → Y with Y ∈ Aff ft
k and every local system L on Y , the

pullback ωX ,L := f !(ωY,L) is a !-local system. To simplify the notation, we will often write ωL
instead of ωX ,L.

(c) For every Y ∈ AlgSpftk and K ∈ Loc!(X), we have K ∈ D≥−2 dimY (Y ), where D≥−2 dimY

refers to the usual (rather than perverse) t-structure. More generally, mimicking the proof of [BKV,

Lemma 6.3.5(a)], for every placid ∞-stack X and K ∈ Loc!(X ) we have K ∈ pD≥0(X ).
(d) Similarly, mimicking the proof of [BKV, Lemma 6.3.5(d)], one shows that if η : X ↪→ Y is

an fp-locally closed immersion between placid ∞-stacks of codimension d with Y smooth, then for
every K ∈ Loc!(Y) we have η∗K ∈ pD≤−2d(X ).

The following result is a slight generalization of [BKV, Theorem 6.5.3].

Theorem 1.3.9. Let (Y, {Yα}α∈I) be a placidly strati�ed ∞-stack, let U ⊆ Y be an fp-open
{Yα}α∈I-adapted ∞-substack, and let f : X → Y be a U-small morphism of ∞-stacks such that f
is ind-fp-proper, X is smooth, while Y admits gluing of sheaves.
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Then for every K ∈ Loc!(X ), the pushforward f!(K) is pf -perverse. Moreover, f!(K) is the
intermediate extension of its restriction to U .

Proof. To proof the result, we repeat the argument of [BKV, Theorem 6.5.3], except we replace
[BKV, Lemma 6.3.5(a),(d)] by Sections 1.3.8(c),(d). □

The following general lemma will be used later.

Lemma 1.3.10. (a) Let C be a stable ∞-category equipped with t-structure. Then there exists a
unique t-structure on CBΓ such that the forgetful functor For : CBΓ → C is t-exact.

(b) Assume further that C is Ql-tensored, cocomplete and that the t-structure on C is compatible
with �ltered colimits. Then for every τ ∈ RepQℓ

(Γ), the functor coinvτ : CBΓ → C is right t-exact.

Proof. (a) Is a particular case of a standard fact, asserting that for every∞-category I the stable∞-
category of functors Funct(I, C) has a unique t-structure such that Funct(I, C)≤0 = Funct(I, C≤0)
and Funct(I, C)≥0 = Funct(I, C≥0).

(b) Since the t-structure is compatible with �ltered colimits, the functor τ ⊗Qℓ
− : C → C is

t-exact. As coinvτ = coinvΓ ◦(τ ⊗Qℓ
−), it su�ces to show that the functor of Γ-coinvariants is

right t-exact. It is thus su�cient to prove that its right adjoint triv : C → CBΓ is left t-exact. But
it is t-exact, as the composition For ◦ triv is the identity functor. □

1.4. Lemmas on quasi-coherent sheaves. Motivated by a nice trick explained to us by Zhiwei
Yun, in this section we will establish simple properties of quasi-coherent sheaves, playing a central
role in the proof of Proposition 3.2.3.

Lemma 1.4.1. Let i : X ↪→ Y be a closed embedding of codimension d between smooth equidimen-
sional schemes over k. Then

(a) the derived pullback functor i∗ : D+(QCoh(Y ))→ D+(QCoh(X)) sends D≥0 to D≥−d;

(b) for every non-zero sheaf K ∈ QCoh(Y ), which is scheme-theoretically supported on X, we
have H−d(i∗K) ̸= 0.

Proof. Both assertions are local, so we can assume that i(X) ⊆ Y is a complete intersection. In
this case, assertion (a) follows from the Koszul resolution of i∗OX .

Next, for every K as in part (b), we have K ≃ i∗M for some M ∈ QCoh(X). Thus, by the
projection formula, we have i∗i∗M ≃M ⊗OX

i∗i∗OX . Hence, assertion (b) follows from the Koszul
resolution for i∗OX as well. □

Corollary 1.4.2. In the situation of Lemma 1.4.1, let K ∈ D≥0(QCoh(Y )) be such that H0(K)
has a non-zero subsheaf K ′, which is scheme-theoretically supported on X. Then H−d(i∗K) ̸= 0.

Proof. Consider the �ber sequence

i∗H0(K)→ i∗K → i∗τ>0K.

Since i∗τ>0K belongs toD≥−d+1 by Lemma 1.4.1(a), we conclude thatH−d(i∗H0(K)) ≃ H−d(i∗K).
Thus, replacing K by H0(K), we can assume that K ∈ QCoh(Y ). Then, using Lemma 1.4.1(a) for
i∗(K/K ′), we obtain that the map

H−d(i∗K ′)→ H−d(i∗K)

is injective. Since H−d(i∗K ′) ̸= 0 by Lemma 1.4.1(b), the assertion follows. □
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Proposition 1.4.3. Let η1, . . . , ηm : X → Y be closed embeddings of smooth equidimensional k-
schemes, let pX : X×Y → X and pY : X×Y → Y be projections, and let K ∈ D+(QCoh(X×Y ))
be such that

(i) K is set-theoretically supported on the union of the graphs of the ηa's;

(ii) we have K ⊗ p∗XA ∈ D≥0 for all A ∈ QCoh(X).

Then we have K ⊗ p∗YB ∈ D≥dimX−dimY for all B ∈ QCoh(Y ).

Proof. Let n be the minimal integer j such that Hj(K ⊗ p∗YB) ̸= 0. We want to show that
n ≥ dimX−dimY . By assumption (i), there exists a nonzero subsheaf K ′ ⊆ Hn(K⊗p∗YB), which
is scheme-theoretically supported on the graph of some ηa.

Consider morphism Γηa := (IdX , ηa) : X → X × Y . It is a closed embedding of smooth equidi-
mensional k-schemes of codimension dimY . Thus, by Corollary 1.4.2, we have Hn−dimY (Γ∗

ηa(K ⊗
p∗YB)) ̸= 0. So it su�ces to show that Γ∗

ηa(K ⊗ p
∗
YB) ∈ D≥dimX−2 dimY .

Using isomorphisms

Γ∗
ηa(K ⊗ p

∗
YB) ≃ Γ∗

ηa(K)⊗ η∗aB ≃ Γ∗
ηa(K ⊗ p

∗
X(η∗aB))

and Lemma 1.4.1(a), it su�ces to prove that K ⊗ p∗X(η∗aB) ∈ D≥dimX−dimY . By Lemma 1.4.1(a),
we have η∗aB ∈ D≥dimX−dimY , so the assertion follows from assumption (ii). □

2. Group analogs of results of [BKV]

In this section, we will show analogs of the results [BKV] in the group case.

2.1. Flatness of the Chevalley map for arcs.

2.1.1. Arc and loop spaces. We set O := k[[t]] and F := k((t))).

(a) For an a�ne scheme of �nite type X over O, we denote by L+(X) the a�ne scheme over k
(called the arc space of X), representing a functor A 7→ X(A[[t]]). Then L+(X) ≃ limn∈N Ln(X),
where Ln(X) is an a�ne scheme of �nite type over k (called the n-truncated arc space of X),
representing a functor A 7→ X(A[t]/(tn+1)).

(b) We have a closed embedding X ↪→ Ln(X), corresponding to the A-algebra homomorphism
A ↪→ A[t]/(tn+1), and projections evn : Ln(X) → X and ev : L+(X) → X, corresponding to the
A-algebra homorphisms A[t]/(tn+1)→ A and A[[t]]→ A such that t 7→ 0.

(c) We have a natural action of multiplicative group Gm on Ln(X) over X, which corresponds
to the action of A× on the A-algebra A[t]/(tn+1) given by the rule a · f(t) := f(at). Then for
x ∈ Ln(X)(k) and a ∈ Gm, the limit lima→0(a · x) exists and is equal to evn(x).

(d) If X is smooth over O, then the argument of [BKV, Section 3.1.4] shows that the arc space
L(X) is admissible and L(X) ≃ limn Ln(X) is an admissible presentation.

(e) For every a�ne scheme of �nite type X over F , we denote by L(X) the ind-scheme over
k representing functor A 7→ X(A((t))), which is called the loop space of X (compare [BKV, Sec-
tion 3.1.5]).

2.1.2. Set up.

(a) Let G be a connected reductive group over k, let B ⊇ T be a Borel group and a maximal
torus of G, respectively, letW be the Weyl group of G, let Λ := X∗(T ) be the lattice of cocharacters

of T , let W̃ := Λ⋊W be the extended a�ne Weyl group of G, and let R be the set of roots of G.
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(b) By a theorem of Steinberg�Chevalley [St], the restriction map k[G] → k[T ] induces an

isomorphism k[G]G
∼→ k[T ]W , where G acts by conjugacy. Let c := T/W = Spec(k[G]G) be the

Chevalley space of G. Then we have canonical projections χ : G→ c and π : T → c.

(c) Let D :=
∏
α∈R(1 − α) be the discriminant function. Then D ∈ k[c] = k[T ]W , and the

regular semisimple locus crs ⊆ c is the complement of the locus Z(D) of zeros of D. We denote by
Grs := χ−1(crs) and T rs := π−1(crs) the preimages of crs.

(d) For most of the paper (everywhere except Lemma 2.1.4) we will assume that the derived group
Gder of G is simply connected. In this case, c is a smooth a�ne scheme (by [St, Theorem 6.1]).
Furthermore, this assumption implies that the centralizer of every semisimple g ∈ G is connected
(see [Hu, § 2.11, Theorem]) that centralizer of every g ∈ Grs is a maximal torus and that the
restriction πrs : T rs → crs of π is a W -torsor (see [Hu, § 2.5, Remark]).

(e) We denote by I := ev−1(B) ⊆ L+(G) the Iwahori subgroup scheme of LG and denote by
v : I → L+(c) the restriction of χ : g→ c. Similarly, for every n ∈ N, we set In := ev−1

n (B) ⊆ Ln(G)
and let vn : In → Ln(c) be the restriction of χn := Ln(χ) : Ln(G)→ Ln(c).

(f) Following [Yun1, Yun2], we assume that the characteristic of k is either zero or greater than
2h, where h is the Coxeter number of G. Note that this assumption implies that the characteristic
of k is prime to |W |, hence prime to the cardinality of Z(Gder).

The following result is central for what follows.

Theorem 2.1.3. For every n ∈ N, the morphisms χn : Ln(G) → Ln(c) and vn : In → Ln(c) are
�at.

Our strategy will be to deduce the result from the corresponding results for Lie algebras shown
in [BKV, Theorem 3.4.7].4

Lemma 2.1.4. Assume that G satis�es the assumption of Section 2.1.2(f) but not necessary of
Section 2.1.2(d), and let UG ⊆ G be the locus of unipotent elements of G. Then we have equalities

(2.1) dimLn(UG) = dimLn(G)− dimLn(c), dim(Ln(UG) ∩ In) = dim In − dimLn(c).

Proof. Let Gsc be the semisimple covering of the derived group of G, and let Ng be the variety of
nilpotent elements of g := LieG.

Since the projection Gsc → G induces an isomorphism UGsc
∼→ UG, we can replace G by Gsc,

thus assuming that G is semisimple and simply connected. Then, applying results of Springer [Sp]
(or using quasi-logarithms of [KV, Section 1.8] and results of [BR]) one shows that there exists

an AdG-equivariant isomorphism Φ : UG
∼→ Ng, inducing an isomorphism Ru(B)

∼→ LieRu(B).
Therefore Φ induces isomorphisms

(2.2) Ln(UG)
∼→ Ln(Ng), Ln(UG) ∩ In

∼→ Ln(Ng) ∩ Lie In.

Since Ng = χ−1
g (0c), where χg : g → cg is the Chevalley map for g and 0c := χg(0), and since

Ln commutes with limits, we have Ln(Ng) = Ln(χg)
−1(0c). Therefore equalities (2.1) follows from

isomorphisms (2.2) and �atness of morphisms Ln(χg) : Ln(g) → Ln(cg) and vn : Lie In → Ln(cg),
established in [BKV, Theorem 3.4.7]. □

4Notice that unlike many of the results of [BKV], which are proven under an assumption that the characteristic
of k is prime to |W |, our proof of [BKV, Theorem 3.4.7] uses [Yun1, Corollary 2.5.2] and therefore is only valid under
the stronger assumption of Section 2.1.2(f).
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Corollary 2.1.5. In the situation of Theorem 2.1.3, for every a ∈ c(k), we have equalities

(2.3) dimLn(χ−1(a)) = dimLn(G)− dimLn(c), dim(Ln(χ−1(a)) ∩ In) = dim In − dimLn(c).

Proof. To show the �rst equality (2.3), we choose any s ∈ T (k) ∩ χ−1(a). Then χ−1(a) ⊆ G
consists of elements g with Jordan decomposition g = gsus such that gs is G-conjugate to s. Since
Gder is assumed to be simply connected, the centralizer Gs is connected. Moreover, the map
[(g, u)] 7→ g(su)g−1 induces an isomorphism

(2.4) G×Gs UGs

∼→ χ−1(a),

(see, for example, [Sl, Ch. II, 3.10, Lemma and Thm]).
Therefore it induces an isomorphism

(2.5) Ln(G)×Ln(Gs) Ln(UGs
)

∼→ Ln(G×Gs UGs
)

∼→ Ln(χ−1(a)),

where for the left isomorphism we use [BKV, Section 3.1.4(f)]. Then

dimLn(χ−1(a)) = dimLn(G)− dimLn(Gs) + dimLn(UGs),

so the �rst equality (2.3) is equivalent to the �rst equality (2.1) for Gs. Since our assumption of
Section 2.1.2(f) for G implies that Gs, the assertion thus follows from Lemma 2.1.4.

To show the second equality (2.3), it su�ces to show that the maps [(g, u)] 7→ g(su)g−1 for
s ∈ T (k) ∩ χ−1(a) induce an isomorphism

(2.6)
∐

s∈T (k)∩χ−1(a)

(
In ×Ln(Gs)∩In (Ln(UGs) ∩ In)

)
∼→ Ln(χ−1(a)) ∩ In.

Indeed, assuming isomorphism (2.6), the second equality (2.3) is equivalent to the second equality
(2.1) for Gs and thus would follow from Lemma 2.1.4.

Notice �rst that the maps [(g, u)] 7→ g(su)g−1 induce an isomorphism

(2.7)
∐

s∈T (k)∩χ−1(a)

(
B ×Gs∩B Ru(Gs ∩B)

) ∼→ χ−1(a) ∩B.

Indeed, this follows from the fact that for every g ∈ χ−1(a) ∩ B its semisimple part gs ∈ B is
B-conjugate to a unique element s ∈ T ∩ χ−1(a).

Next, we observe that the diagram

(2.8)

In ×Ln(Gs)∩In (Ln(UGs) ∩ In) −−−−→ Ln(G)×Ln(Gs) Ln(UGs)y y
B ×Gs∩B Ru(Gs ∩B) −−−−→ G×Gs UGs

,

where the horizontal maps are induced by the embedding B ↪→ G and vertical maps by the projec-
tion evn : Ln(G)→ G, is Cartesian.

Finally, isomorphism (2.6) follows from a combination of isomorphisms (2.4), (2.5) and (2.7),
using the Cartesian diagram (2.8). □

Now we are ready to prove Theorem 2.1.3.

Proof of Theorem 2.1.3. First we will show the case of χn. As the source and the target of χn are
smooth and connected, it su�ces to prove that all non-empty geometric �bers of χn are equidimen-
sional of constant dimension dimLn(G)− dimLn(c).
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Since the function

(2.9) Ln(G)→ Z : g 7→ dimg χ
−1
n (χn(g))

is upper semi-continuous (see [EGA IV, Theorem 13.1.3] or [Sta, Tag 02FZ]), it thus su�ces to
show that

(2.10) dimg χ
−1
n (χn(g)) ≤ dimLn(G)− dimLn(c)

for every g ∈ Ln(G)(k).
Recall that group Gm acts on Ln(G) and Ln(c) (see Section 2.1.1(c)), the morphism χn is Gm-

equivariant, and element g := evn(g) ∈ G(k) lies in the closure of the Gm-orbit of g ∈ Ln(G)(k).
Thus, by the semi-continuity of function (2.9) we conclude that

dimg χ
−1
n (χn(g)) ≤ dimg χ

−1
n (χn(g)).

Therefore it is su�ces to show inequality (2.10) for g ∈ G(k).
Finally, since functor Ln commutes with limits, we have an identi�cation

χ−1
n (χn(g)) ≃ χ−1

n (a) ≃ Ln(χ−1(a)) for a := χ(g) ∈ c(k).

Thus, inequality (2.10) for g ∈ G(k) follows from the �rst equality (2.3).

The proof for vn is similar. First of all, it su�ces to show that for every g ∈ In we have inequality

(2.11) dimg v
−1
n (vn(g)) ≤ dim In − dimLn(c).

Next, since In ⊆ Ln(G) is closed and Gm-invariant, repeating the argument for χn we conclude
that it su�ces to show inequality (2.11) for g ∈ B(k). Finally, using identi�cation

v−1
n (vn(g)) ≃ Ln(χ−1(a)) ∩ In for a := χ(g) ∈ c(k),

inequality (2.11) follows from the second equality (2.3). □

2.2. The Goresky�Kottwitz�MacPherson strati�cation.

2.2.1. Construction (compare [BKV, Sections 3.3.2�3.3.3]).

(a) We set a := |W |, O′ := k[[t
1
a ]], let ξ ∈ k be a �xed a-th root of unity, and let σ ∈ Aut(O′/O)

the automorphism given by t
1
a 7→ ξt

1
a . We denote by T ′ := ResO′/O T the Weil restriction of

scalars, and for w ∈ W we consider the subscheme of �xed points Tw := ResO′/O(T )
wσ. Since the

characteristic of k is assumed to be prime to a (see Section 2.1.2(f)), each Tw is a smooth group
scheme over O.

(b) To every pair (w, r), where w ∈W and r is a function R→ 1
aZ≥0, one associates the fp-locally

closed subscheme Tw,r ⊆ L+(Tw) such that

Tw,r = {t ∈ L+(Tw) | val(1− α(t)) = r(α) for all α ∈ R}.
Thus, Tw,r is either empty or an open subscheme in some congruence subgroup scheme of L+(Tw), in
which case Tw,r is connected and strongly pro-smooth. Moreover, by Sections 1.2.4(e) and 2.1.1(c),
scheme Tw,r is admissible. We will call (w, r) a GKM pair, if Tw,r ̸= ∅.

(c) The projection π : T → c of a�ne schemes over k induces a projection πw : Tw → c of a�ne
schemes over O, hence a projection πw,r : Tw,r ↪→ L+(Tw)→ L+(c).

(d) In the case (w, r) = (1, 0), we have an equality Tw,r = L+(T rs).

(e) For every u ∈W and a GKM pair (w, r), the automorphism u∗ of T induces an isomorphism

Tw,r
∼→ Tuwu−1,u(r) over L+(c). In particular, we have an action of W on the set of GKM pairs

given by the formula u(w, r) := (uwu−1, u(r)), and we denote by Ww,r ⊆W the stabilizer of (w, r).
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Proposition 2.2.2. For every GKM pair (w, r), the schematic image cw,r of πw,r is a connected
a�ne strongly pro-smooth fp-locally closed subscheme of L+(c), and the map πw,r : Tw,r → cw,r is
a Ww,r-torsor.

Proof. Since π : T → c a �nite morphism which is a W -torsor over crs (see Section 2.1.2(d)), the
assertion follows from [BKV, Lemma 3.2.6] by the same arguments as in [BKV, Section 3.3.4]. □

2.2.3. Notation. As in [BKV, Section 3.4.1], for every GKM pair (w, r), we consider codimensions
aw,r := codimL+(Tw)(Tw,r) and bw,r := codimL+(c)(cw,r), denote by r the rank of G, and set

dr :=
∑
α∈R r(α), cw := r − dim(Tw) and δw,r :=

dr−cw
2 .

The following result is a group analog of [BKV, Corollary 3.4.9(a)]:

Lemma 2.2.4. For every GKM pair (w, r), the fp-locally closed subscheme Iw,r := v−1(cw,r) ⊆ I
is of pure codimension bw,r.

Proof. Repeating the argument of [BKV, Corollary 3.4.9(a)], the assertion is a formal corollary of
the �atness of vn (Theorem 2.1.3). □

One has the following analog of [GKM, Theorem 8.2.2]:

Proposition 2.2.5. For every GKM pair (w, r), we have an equality bw,r = δw,r + aw,r + cw.

The proof is based on the following simple result.

Lemma 2.2.6. (a) Let X be a scheme with placid presentation X ≃ limαXα, and let prα : X → Xα

be projections. Then for every x ∈ X(k), the tangent space Tx(X) has a placid (even admissible)
presentation Tx(X) ≃ limα Txα

(Xα) with xα := prα(x) ∈ Xα(k) for each α.

(b) Let f : X → Y be an fp-morphism between strongly pro-smooth k-schemes. Then for every
x ∈ X(K), the di�erential dfx : Tx(X)→ Ty(Y ) is �nitely presented, and we have an equality

dimf (x) = dimdfx
(0).

(c) Let f : X → Y be a morphism of smooth schemes over O, let x ∈ X(O) = L+(X)(k) be such
that the generic �ber fF : XF → YF is étale at x, let dfx : Tx(X)→ Tf(x)(Y ) be the di�erential (an

O-linear map of relative tangent spaces), and let L+(f) : L+(X)→ L+(Y ) be the map between arc
spaces.

Then d(L+(f))x : Tx(L+(X)) → Tf(x)(L+(Y )) is an fp-closed embedding of pure codimension
val(det dfx), where val(det dfx) denotes the valuation of the determinant of dfx.

Proof. (a) The isomorphism Tx(X) ≃ limα Txα
(Xα) follows from the fact that functor of tangent

spaces commutes with limits. To �nish, we observe that each projection Xβ → Xα is smooth, hence
the di�erential Txβ

(Xβ)→ Txα(Xα) is surjective, thus smooth.

(b) By assumption, there is a Cartesian diagram

X
f−−−−→ Y

pX

y ypY
X ′ f ′

−−−−→ Y ′

such that X ′, Y ′ ∈ Schftk are smooth and vertical morphisms are strongly pro-smooth. Since func-
tor of tangent spaces preserves �ber products, the assertion for f follows from the corresponding
assertion for f ′. Finally, since X ′ and Y ′ are smooth over k, the assertion for f ′ follows.
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(c) Assume �rst that X = Y = AnO and f is an O-linear map. In this case, f is injective and
the assertion is easy. Next, to deduce the general case follows from the linear case, we observe that
d(L+(f))x is naturally identi�ed with L+(dfx) : L+(Tx(X))→ L+(Tf(x)(Y )). □

Now we are ready to prove Proposition 2.2.5.

Proof of Proposition 2.2.5. Let x ∈ Tw,r and y := πw,r(x) ∈ cw,r. Then we have a commutative
diagram

Tx(Tw,r) //

d(πw,r)x

��

Tx(L+(Tw))

d(πw)x

��

Ty(cw,r) // Ty(L+(c)).

Since the map πw,r : Tw,r → cw,r is étale (by Proposition 2.2.2), the map d(πw,r)x is an isomor-
phism (compare the proof of Lemma 2.2.6(b)). Since the generic �ber (πw)F : (Tw)F → cF is étale
at x ∈ Tw(O), the map d(πw)x is injective of codimension val(det d(πw)x) (by Lemma 2.2.6(c)).
Therefore, by Lemma 2.2.6(b), we have equalities

bw,r = codimTy(L+(c))(Ty(cw,r)) = codimTy(L+(c))(Tx(Tw,r)) =

= codimTx(L+(Tw))(Tx(Tw,r)) + codimTy(L+(c))(Tx(L+(Tw))) = aw,r + val(det d(πw)x).

It thus su�ces to show that

val(det d(πw)x) = δw,r + cw =
dr + cw

2
.

But this follows by the argument of [GKM, Lemma 8.2.1] except we have to replace the identity
[GKM, (2.3.1)] by its group version [Hu, Section 4.23]. □

2.2.7. Remark. Note that our proof of the codimension formula is much shorter than the one of
[GKM], as we already know that the map πw,r : Tw,r → cw,r is étale.

Corollary 2.2.8. For every GKM pair (w, r), we have an inequality bw,r ≥ δw,r. Moreover, equality
holds if and only if w = 1 and r = 0.

Proof. Since aw,r, cw ≥ 0, the inequality bw,r ≥ δw,r follows from Proposition 2.2.5. Moreover,
equality holds if and only if cw = aw,r = 0. Furthermore, this happens if and only if w = 1 and
Tw,r = Tr ⊆ L+(T ) is open. Finally, Tr ⊆ L+(T ) is open if and only if r = 0. □

2.3. The a�ne Grothendieck-Springer �bration.

2.3.1. The �bration (compare [BKV, Sections 4.1.1�4.1.3]).

(a) Let Fl := LG/I be the a�ne �ag variety, and set

C̃ := {([g], γ) ∈ Fl×LG | g−1γg ∈ I}.
By functoriality, the Chevalley morphism χ : G → c induces a map Lχ : LG → L c, and we set

C := (Lχ)−1(L+(c)) ⊆ LG. The second projection Fl×LG→ LG induces a projection p : C̃→ C.

(b) Note that C̃ is the inverse image of the fp-closed substack [I/I] ⊆ [LG/I] by the map

Ad : Fl×LG→ [LG/I] : ([g], γ) 7→ [g−1γg],

where I acts on the right hand side by conjugation. Therefore C̃ is an fp-closed ind-subscheme
of Fl×LG. Moreover, since Fl is an ind-fp-proper ind-scheme over k, the map p is ind-fp-proper
(compare [BKV, Lemma 4.1.4]).
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(c) The group ind-scheme LG acts on C̃ by the rule

h([g], γ) = ([hg], hγh−1)

and the map Ad from part (b) induces an isomorphism of ∞-stacks [C̃/LG] ∼→ [I/I]. Moreover,
the map p is LG-equivariant and hence induces a map between quotient stacks

(2.12) p : [C̃/LG]→ [C/LG],

which is also ind-fp-proper (by part (b) and [BKV, Section 1.2.9(b)]).

(d) The projection pr : I → T induces a morphism [C̃/LG] ∼→ [I/I]→ T , which we also denote
by pr. Explicitly, pr send a class [([g], γ)] to the class of g−1γg ∈ I.

2.3.2. The constructible strati�cation (compare [BKV, Section 4.1.7]).

(a) Let Z(D) ⊆ c be the locus of zeros of D ∈ k[c], and set L+(c)• := L+(c)∖L+(Z(D)). It is a
non-quasi-compact open subscheme of L+(c), which has an open increasing covering

L+(c)• =
⋃
m∈N

c≤m,

where c≤m := {a ∈ L+(c) | val(D(a)) ≤ m}.

(b) We set C• := (Lχ)−1(c•) ⊆ C, C≤m := (Lχ)−1(c≤m) ⊆ C•, and C̃• = p−1(C•). We can then

write C̃• as an increasing union of open ind-schemes:

(2.13) C• =
⋃
m∈N

C≤m.

Then each C≤m is an ind-placid ind-scheme, being an fp-locally closed sub-indscheme of an ind-
placid ind-scheme LG.

(c) For every GKM pair (w, r), we set Cw,r := χ−1(cw,r) ⊆ C• and C̃w,r := p−1(Cw,r) ⊆ C̃•. As
in the Lie algebra case, {cw,r}w,r forms a bounded constructible strati�cation of L(c)• and induces
a bounded constructible strati�cation {[Cw,r/LG]red}w,r of [C•/LG].

(d) The projection p from Section 2.3.1(c) induces projections p• : [C̃•/LG] → [C•/LG] and
pw,r : [C̃w,r/LG]red → [Cw,r/LG]red.

2.3.3. A�ne Springer �bers.

(a) For every γ ∈ C•(k) ⊆ Grs(F ), the closed ind-subscheme

Flγ = {[g] ∈ Fl | g−1γg ∈ I},

is the preimage of p−1(γ) and is usually called the a�ne Springer �ber of γ. By Section 2.3.1(b),
Flγ is an ind-fp-proper ind-scheme over k.

(b) As in the Lie algebra case, the reduced ind-scheme (Flγ)red is a �nite-dimensional scheme,
locally of �nite type over k. Moreover, if γ ∈ Cw,r(k), then, in the notation of Section 2.2.3, we
have an equality dim(Flγ)red = δw,r.

Namely, both assertions can be either deduced from the results of [KL] and [Be] by the argument
of [BV, Appendix B.2�B.3] (using quasi-logarithms and the topological Jordan decomposition) or
be obtained in a more general framework of [Bo1] and [BCh].
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2.3.4. Fibration over a GKM stratum. Fix a GKM pair (w, r).

(a) As in [BKV, Sections 4.1.5�4.1.6], we have a canonical embedding Tw,r ↪→ Cw,r, unique up
to an LG-conjugacy, thus a canonical map ψw,r : Tw,r → [Cw,r/LG]red. Furthermore, arguing
as in [BKV, Corollaries 4.1.10 and 4.1.12] one concludes that the map ψw,r is a smooth covering,
[Cw,r/LG]red is an admissible ∞-stack (see Section 1.2.4), and ψw,r induces an isomorphism

[ψw,r] : [Tw,r/(Ww,r ⋉ (LTw)red]
∼→ [Cw,r/LG]red,

where the group scheme (LTw)red acts on Tw,r trivially.

(b) Consider the Cartesian diagram

(2.14)

Xw,r
ϕw,r−−−−→ [C̃w,r/LG]red

gw,r

y ypw,r

Tw,r
ψw,r−−−−→ [Cw,r/LG]red.

By de�nition, Xw,r is the reduction of a closed ind-subscheme

{([g], γ) ∈ Fl×Tw,r | g−1γg ∈ I} ⊆ Fl×Tw,r.
In particular, there is a natural action of the group scheme (LTw)red on Xw,r over Tw,r, given by
the formula t([g], γ) := ([tg], γ) (compare [BKV, Section 4.3.2]).

(c) Recall that group Λw := HomF (Gm, Tw) is naturally a subgroup of L(Tw)red via the embed-
ding λ 7→ λ(t). Therefore the action of L(Tw)red from part (b) induces an action of Λw on Xw,r

over Tw,r. Moreover, the composition

Xw,r
ϕw,r−→ [C̃w,r/LG]

pr−→ T : ([g], γ) 7→ [g−1γg]

is Λw-equivariant and thus factors through the projection Xw,r → [Xw,r/Λw].

The following result is a group analog of [BKV, Corollary 4.3.4].

Proposition 2.3.5. (a) In the notation of Section 2.3.4, Xw,r is a placid reduced scheme locally
�nitely presented over Tw,r, equipped with an action of Λw. Moreover, the quotient [Xw,r/Λw] is an
algebraic space, fp-proper over Tw,r. Furthermore, there exists a subgroup Λ′

w ⊆ Λw of �nite index
such that the quotient [Xw,r/Λ

′
w] is a scheme.

(b) The map pw,r is a locally fp-representable morphism between placid ∞-stacks. Moreover, it
is uo-equidimensional of relative dimension δw,r.

Proof. To prove the results, we repeat the arguments of [BKV, Corollary 4.3.4(a),(b)], replacing
[BKV, Theorem 3.4.7] by Theorem 2.1.3 and replacing dimension formula of Bezrukavnikov [Be] by
its group version (see Section 2.3.3(b)). □

Theorem 2.3.6. The projection p• : [C̃•/LG]→ [C•/LG] is [C≤0/LG]-small (see Section 1.1.10).

Proof. Note that ([C•/LG], {[Cw,r/LG]red}w,r) is a placidly strati�ed∞-stack (by Sections 2.3.2(c)

and 2.3.4(a)), and that [C̃•/LG] ≃ [I•/I] is a placid ∞-stack (by Section 2.3.1(c) and 1.1.5(a)).

Moreover, each [C̃w,r/LG] ≃ [Iw,r/I] is an fp-locally closed substack of [C̃•/LG] ≃ [I•/I] of pure
codimension bw,r (by Lemma 2.2.4 and Section 1.1.7(b)(ii)), each pw,r is locally fp-representable and
equidimensional of relative dimension δw,r (by Proposition 2.3.5(b) and Section 1.1.8(b)). Finally,
inequalities of Section 1.1.10(c)(iii) follow from Corollary 2.2.8. □
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2.3.7. Fibration over a regular stratum.

(a) Arguing as in [BKV, Corollaries 4.2.2�4.2.3], we have a commutative diagram

[L+(T rs)/L+(T )]
∼−−−−→ [C̃≤0/LG]y yp≤0

[L+(T rs)/W ⋉ L(T )red]
∼−−−−→ [C≤0/LG]red,

where the top isomorphism is the isomorphism [ψw,r] of Section 2.3.4(a) for (w, r) = (1, 0).

(b) Using isomorphism L(T )red ≃ L+(T ) × Λ (see [BKV, Section 4.1.11]), we conclude from

the commutative diagram of part (a), that the projection p≤0 : [C̃≤0/LG] → [C≤0/LG]red is a

W̃ -torsor.

(c) Notice that the composition

[L+(T rs)/L+(T )]
∼→ [C̃≤0/LG]

pr−→ T

sends [t] 7→ ev(t). In particular, it is W̃ -equivariant with respect to the natural action of W and
the trivial action of Λ on both sides.

3. Application to affine Grothendieck�Springer sheaves

3.1. Perversity and W̃ -action.

3.1.1. Observations (compare [BKV, Sections 7.1.1�7.1.3]).

(a) Recall the projection p : [C̃/LG] → [C/LG] is ind-fp-proper (see Section 2.3.1(c)), so the

pullback p! admits a left adjoint p! that satis�es base change (by [BKV, Proposition 5.3.7]).

(b) Using observations of Section 2.3.2(b) and arguing as in [BKV, Lemma 7.1.2], one obtains
that the ∞-stack [C•/LG] admits gluing of sheaves.

(c) By Theorem 2.3.6, the strati�ed∞-stack ([C•/LG], {[Cw,r/LG]red}w,r) is placidly strati�ed,
and the projection p• : [C̃•/LG]→ [C•/LG] is [C≤0/LG]-small. Therefore morphism p• gives rise
to a perversity pν = {νw,r}w,r, de�ned by νw,r := δw,r + bw,r (see Sections 1.3.5(b) and 2.2.3).

(d) By parts (b),(c) and Section 1.3.6(b), the∞-category D([C•/LG]) is equipped with a canon-
ical t-structure, corresponding to the perversity pν .

Theorem 3.1.2. For every !-local system K ∈ Loc!([C̃•/LG]), the push-forward (p•)!(K) is pν-
perverse. Moreover, it is the intermediate extension of its restriction to [C≤0/LG].

Proof. Since projection p• is [C≤0/LG]-small (by Theorem 2.3.6), the assertion follows from The-
orem 1.3.9. □

3.1.3. Basic example.

(a) Let pr : [C̃/LG] → T be the projection (see Section 2.3.1(d)). Then a local system L
on T gives rise to the !-local system ωL on [C̃/LG] (see Section 1.3.8(b)), hence to the object
SL := p!(ωL) ∈ D([C/LG]), called the a�ne Grothendieck�Springer sheaf.

(b) Let SL,• be the restrictions of SL to the open substack [C•/LG]. Since p! satis�es base
change, we have an identi�cation SL,• ≃ (p•)!(ωL) ∈ D([C•/LG]). Thus, by Theorem 3.1.2, the
sheaf SL,• is pν-perverse and is the intermediate extension of its restriction SL,≤0 ∈ D([C≤0/LG]).
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(c) For every γ ∈ C•(k), we denote by ιγ the corresponding morphism pt→ [C•/LG]. Then, by
base change, we have an isomorphism

(3.1) ι!γ(SL,•) ≃ RΓc(Flγ , ωL).

Corollary 3.1.4. (a) For a local system L on T , we have natural isomorphisms

aw,L : SL,•
∼→ Sw!(L)• for w ∈ W̃ , satisfying aw1,(w2)!(L) ◦ aw2,L ≃ aw1w2,L for w1, w2 ∈ W̃ .

(b) The a�ne Grothendieck�Springer sheaf SL,• ∈ D([C•/LG]) is equipped with a natural
Λ-action, that is, has a natural lift to DΛ([C•/LG]). Furthermore, SL,• has a natural lift to

DW̃ ([C•/LG]), if L is W -equivariant.

Proof. (a) Since SL,• is the intermediate extension of SL,≤0 (see Section 3.1.3(b)), for every w ∈ W̃
the restriction map

Hom(SL,•,Sw!(L),•)→ Hom(SL,≤0,Sw!(L),≤0)

is an isomorphism. Thus, it remains to construct a collection of isomorphisms

aw,L : SL,≤0
∼→ Sw!(L),≤0, satisfying aw1,(w2)!(L) ◦ aw2,L ≃ aw1w2,L.

By the base change, we have an isomorphism SL,≤0 ≃ (p≤0)!(ωL). Recall that the projection

p≤0 : [C̃≤0/LG] → [C≤0/LG]red is a W̃ -torsor, and the projection pr : [C̃•/LG] → T is W̃ -

equivariant (see Section 2.3.7(b),(c)). Since ωL = pr!(ωT ⊗ L) ∈ D([C̃≤0/LG]), for every w ∈ W̃
we have an isomorphism w!(ωL) ≃ ωw!(L), hence an isomorphism

aw,L : SL,≤0 ≃ (p≤0)!(ωL) ≃ (p≤0 ◦ w)!(ωL) ≃ (p≤0)!w!(ωL) ≃ (p≤0)!(ωw!(L)) ≃ Sw!(L),≤0.

Moreover, the identity aw1,(w2)!(L) ◦ aw2,L ≃ aw1w2,L is straightforward.

(b) Since perverse sheaves have no negative Exts, it follows for example from [Lu, Remark 1.2.1.12]
that the∞-category Pervpν ([C•/LG]) of pν-perverse sheaves is equivalent to its homotopy category.
Since each SL,• is pν-perverse, it is thus enough to construct the action at the level of homotopy
categories. So both assertions follows from part (a). □

Corollary 3.1.5. Fix γ ∈ C•(k). For a local system (resp. W -equivariant local system) L on T ,

(a) the complex RΓc(Flγ , ωL) is equipped with an action of Λ× LGγ (resp. W̃ × LGγ);
(b) for every i ∈ Z, the cohomology group Hi

c(Flγ , ωL) is equipped with an action of Λ×π0(LGγ)
(resp. W̃ × π0(LGγ)).

Proof. (a) Notice that the morphism ιγ : pt → [C•/LG] from Section 3.1.3(c) factors through
[pt /LGγ ]. Therefore the pullback ι!γ(SL,•) ∈ DΛ(pt) of SL,• ∈ DΛ([C•/LG]) has a natural lift

to an object of DΛ([pt /LGγ ]) = DΛ×LGγ (pt). From this the assertion follows using isomorphism
(3.1). The assertion for W -equivariant local systems is similar.

(b) By part (a), for every i ∈ Z, the cohomology group Hi
c(Flγ , ωL) is equipped with an action

of Λ × LGγ (resp. W̃ × LGγ). Now the assertion follows from the fact that the LGγ-action on
each Hi

c(Flγ , ωL) factors through π0(LGγ). □

3.1.6. Remark. By the Poincaré duality, the cohomology group Hi
c(Flγ , ωL) coincides with the

homology group H−i(Flγ ,FL) considered in [BV]. Thus, by [BV, Corollary 2.2.8], we have an a

priori di�erent Lusztig action of Λ (resp. W̃ ) on each Hi
c(Flγ , ωL).
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Proposition 3.1.7. For every γ ∈ C•(k) and i ∈ Z, the action of Λ (resp. W̃ ) on Hi
c(Flγ , ωL)

from Corollary 3.1.5 coincides with the action from [BV, Corollary 2.2.8].

Proof. By the construction of the actions in Corollary 3.1.5 and [BV, Corollary 2.2.8], it su�ces to

show that for every w ∈ W̃ , the isomorphism

(3.2) aw,L : Hi
c(Flγ , ωL)

∼→ Hi
c(Flγ , ωw!(L)),

induced by the isomorphism aw,L of Corollary 3.1.4, coincides with the isomorphism of [BV, Propo-
sition 2.2.7(c)].

Recall that the a�ne Weyl group W̃ is generated by a set S̃ ⊆ W̃ of simple a�ne re�ections and
a �nite abelian group Ω := NLG(I)/I (compare [BV, Section 2.1.2(d)]). Thus, it su�ces to show

the equality of isomorphisms aw,L for w ∈ Ω and w ∈ S̃.
To show the assertion for w ∈ Ω = NLG(I)/I, note that w induces an automorphism w∗ of

[C̃/LG] ≃ [I/I] over [C/LG] and in both cases the isomorphism aw,L of (3.2) is induced by w∗.

To show the assertion for w = s ∈ S̃, consider diagram of adjoint quotients

[I/I]
prs−−−−→ [Bs/Bs]

prs−−−−→ T

ps

y ps

y
[Ps/Ps]

prs−−−−→ [Ls/Ls]

ps

y
[C/LG],

where Ps ⊋ I is the minimal standard parahoric of LG, corresponding to s, P+
s ⊆ Ps is the pro-

unipotent radical of Ps, Ls := Ps/P
+
s is the corresponding �Levi subgroup�, Bs := I/P+

s ⊆ Ls is
the Borel subgroup of Ls, and all the maps are natural projections.

Set SfinL := (ps)! pr
!
s(ωT,L) ∈ D([Ls/Ls]). Then, by the usual (�nite-dimensional) Springer theory

(see, for example, [BV, Section 1.2.1.(e)]), we have a natural isomorphism

afins,L : SfinL
∼→ Sfins!(L).

On the other hand, by the proper base change, we have a natural identi�cation

SL ≃ (ps)!(ps)!(pr
s)! pr!s(ωT,L) ≃ (ps)!(pr

s)!(ps)! pr
!
s(ωT,L) = (ps)!(pr

s)!(SfinL ).

So isomorphism afins,L induces an isomorphism

aLus,L : SL
∼→ Ss!(L),

where �Lu� stands for Lusztig, and by de�nition the isomorphism (3.2) of [BV, Proposition 2.2.7(c)]
is induced by isomorphism aLus,L.

It remains to check that the restriction of the isomorphism aLus,L to [C•/LG] coincides with the
isomorphism of as,L of Corollary 3.1.4. By construction, it su�ces to show that the restriction of

the isomorphism aLus,L to [C≤0/LG] is induced by the geometric action of s ∈ W̃ on [C̃≤0/LG]. But
this follows from the fact that the usual Springer action afins,L is induced by the geometric action on
the regular semisimple locus. □
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3.1.8. Remarks. The following observations are not used in this work:

(a) Arguing as in [BV, Proposition 2.2.7] or [Bo2, Section 3.3] (using presentation of W̃ by
generators and relations), one can show that a small modi�cation of the argument of Proposition

3.1.7 provides a Lusztig action of Λ (resp. W̃ ) on SL on the level of homotopy categories. In
particular, using the perversity of SL,• and observation of [Lu, Remark 1.2.1.12] again, one can
deduce that the induced action on SL,• lifts uniquely to the action on the level of ∞-categories.

Moreover, the resulting action of Λ (resp. W̃ ) on SL,• coincides with the one of Corollary 3.1.4.

(b) Furthermore, using perversity of �nite-dimensional Springer sheaves, one can show that the

Lusztig action of Λ (resp. W̃ ) on SL on the level of homotopy categories discussed in part (a) can
be lifted to the action on the level of ∞-categories (see [BeKV2]). Furthermore, this lift can be
shown to be unique.

Corollary 3.1.9. For every γ ∈ C•(k) and i ∈ Z, the cohomology group Hi
c(Flγ , ωL) is a �nitely

generated Ql[Λ]-module.

Proof. This follows from a combination of Proposition 3.1.7 and [BV, Proposition 3.3.2]. □

3.1.10. Remark. The proof of [BV, Proposition 3.3.2] uses a group version [BV, Proposition 2.3.4]
of Yun's theorem [Yun2] on the compatibility of actions on homology of a�ne Springer �bers, whose
proof is global. A di�erent (purely local) proof of this assertion will appear in [BeKV2].

Theorem 3.1.11. For every local system L on T , the sheaf SL,• ∈ DΛ([C•/LG]) is Λ-constructible.
Proof. By Lemma 1.2.15(a), it su�ces to show that the !-restriction of SL,• to each stratum
[Cw,r/LG]red is Λ-constructible. Moreover, since ψw,r : Tw,r → [Cw,r/LG]red is a covering (see
Section 2.3.4(a)), it follows from Lemma 1.2.15(b) that it su�ces to show that the !-pullback
(ψw,r)

!(SL,•) ∈ D(Tw,r) is Λ-constructible.
By the base change, we have (ψw,r)

!(SL,•) ≃ (gw,r)!(ωL), where gw,r : Xw,r → Tw,r is the
morphism from Section 2.3.4(b). Moreover, as it is shown in Proposition 2.3.5, the group Λw acts
on Xw,r over Tw,r, and the quotient [Xw,r/Λw] is an fp-proper algebraic space over Tw,r.

Since the composition pr ◦ϕw,r : Xw,r → T factors through the projection Xw,r → [Xw,r/Λw]
(see Section 2.3.4(c)), it thus follows from Lemma 1.2.16 that (gw,r)!(ωL) ∈ D(Tw,r) has a natural
lift to DΛw(Tw,r), and the corresponding lift is Λw-constructible. Hence, by Section 1.2.14(b), the
sheaf (gw,r)!(ωL) is essentially constructible.

Note that Tw,r is an admissible scheme (see Section 2.2.1(b)) and algebra Qℓ[Λ] is Noetherian
of �nite cohomological dimension. Thus, by Proposition 1.2.17, it su�ces to show that for every
γ ∈ Tw,r(k), the pullback

ι!γ((gw,r)!(ωL)) ≃ RΓc(Flγ , ωL) ∈ DΛ(pt)

is a perfect complex. Equivalently, we have to show that each cohomology group Hi
c(Flγ , ωL) is a

�nitely-generated Ql[Λ]-module. But this follows from Corollary 3.1.9. □

3.1.12. Remark. A di�erent proof of (a generalization of) Theorem 3.1.11 will appear in [BeKV2].

Corollary 3.1.13. For every local system L on T and representation τ ∈ RepQℓ
(Λ), the sheaf of τ -

coinvariants SL,•,τ := coinvτ (SL,•) is essentially constructible. Furthermore, SL,•,τ is constructible,
if τ is �nite dimensional.

Proof. Since SL,• ∈ DΛ([C•/LG]) is Λ-constructible (by Theorem 3.1.11), the assertion follows
from Lemma 1.2.15(c). □
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3.2. Perversity of τ-coinvariants. Now we are ready to prove the main result of this work.

Theorem 3.2.1. For every local system on L on T and representation τ ∈ RepQℓ
(Λ), the sheaf of

τ -coinvariants SL,•,τ = coinvτ (SL,•) ∈ D([C•/LG]) is pν-perverse.

3.2.2. Remarks. (a) Unlike SL,•, we do not expect that SL,•,τ is always the intermediate extension
of its restriction to [C≤0/LG]. Similarly, we do not expect that SL,•,τ is always irreducible, when
τ and L are irreducible.

(b) On the other hand, our argument shows that there exists an open∞-substack U ⊆ [C≤0/LG]
(a union of �nitely many strata [Cw,r/LG]) such that SL,•,τ is the intermediate extension of its
restriction to U for every representation τ ∈ RepQℓ

(Λ). We also expect that SL,•,τ is of �nite length,
if τ and L are such.

Proof. As SL,• is pν-perverse (by Theorem 3.1.2), and the functor of τ -coinvariants is right t-exact
(by Lemma 1.3.10), we only have to prove that SL,•,τ ∈ pνD≥0([C•/LG]). By de�nition, we have
to check that for every GKM pair (w, r), we have

η!w,r(SL,•,τ ) ∈ pD≥−νw,r([Cw,r/LG]red).

Next, using identity νw,r = δw,r + bw,r = 2δw,r + cw + aw,r = dr + aw,r (by Proposition 2.2.5), it
thus su�ces to check that for every GKM pair (w, r), we have

η!w,r(SL,•,τ ) ∈ pD≥−dr([Cw,r/LG]red).

Since SL,•,τ is essentially constructible (by Corollary 3.1.13), the pullback η!w,r(SL,•,τ ) is es-
sentially constructible (by Section 1.2.2(c)). Using the fact that the ∞-stack [Cw,r/LG]red is
admissible (see Section 2.3.4(a)), it follows from Proposition 1.3.4 that it su�ces to show that for
every γ ∈ Cw,r(k), one has an inclusion

(3.3) ι!γ(SL,•,τ ) ∈ D≥−dr(pt).

Combining isomorphism ι!γ(SL,•) ≃ RΓc(Flγ , ωL) (see Section 3.1.3(c)) with observations of Sec-
tions 1.2.8(c),(d), we get an isomorphism

ι!γ(SL,•,τ ) ≃ (ι!γ(SL,•))τ ≃ RΓc(Flγ , ωL)τ ≃ τ ⊗LQℓ[Λ]
RΓc(Flγ , ωL),

where τ is the right Ql[Λ]-module, corresponding to τ ∈ RepQℓ
(Λ) (see Section 1.2.8(d)). Now

inclusion (3.3) follows from Proposition 3.2.3 below. □

Proposition 3.2.3. For every γ ∈ Cw,r(k) and every representation τ ∈ RepQℓ
(Λ), we have

τ ⊗LQℓ[Λ]
RΓc(Flγ , ωL) ∈ D≥−dr .

Proof. Set V := RΓc(Flγ , ωL) and we want to show that τ ⊗LQℓ[Λ]
V ∈ D≥−dr . To make the proof

more structural, we will divide it into steps:

Step 1. Note that Λγ := HomF (Gm, Gγ) is naturally a subgroup of LGγ via the map λ 7→ λ(t).
By Corollary 3.1.5(a), V is equipped with an action of Λ×LGγ , therefore with an action of Λ×Λγ .
We claim that for every ν ∈ RepQl

(Λγ), we have

ν ⊗LQℓ[Λγ ]
V ∈ D≥−2δw,r .
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Proof. Consider projection p : Flγ → Y := [Flγ /Λγ ], and let prγ : Flγ → T be the restriction of

pr : [C̃/LG]→ T (see Section 2.3.1(d)). As in Section 2.3.4(c), the projection prγ factors through

p : Flγ → Y . Thus, V ≃ RΓc(Y, p!p
!ωL), where we write ωL instead of ωY,L (see Section 1.3.8(b)).

Moreover, the Λγ-action on V comes from the Λγ-action on p!p
!ωL (compare Lemma 1.2.11(a)).

Then, using Sections 1.2.8(c),(d) and Lemma 1.2.11(b), we have an identi�cation

ν ⊗LQℓ[Λ]
V ≃ coinvν(V ) ≃ coinvν(RΓc(Y, p!p

!ωL)) ≃

≃ RΓc(Y, coinvν(p!p!ωL))) ≃ RΓc(Y,Aν
!
⊗ ωL).

Using Sections 1.3.8(b),(c) we conclude that Aν
!
⊗ ωL is a !-local system on Y , hence it lies in

D≥−2 dimY (Y ) with respect to the usual (rather than perverse) t-structure. Therefore we have

ν ⊗LQℓ[Λ]
V ≃ RΓc(Y,Aν

!
⊗ ωL) ∈ D≥−2 dimY ,

so our assertion follows from the equality dimY = dimFlγ = δw,r. □

Step 2. As in [BV, Section 2.3.1], we have a canonical isomorphism π0(LGγ) ≃ X∗(Gγ)ΓF
,

where we set X∗(Gγ) := HomF (Gm, Gγ). Moreover the composition Λγ ↪→ LGγ → π0(LGγ) can
be rewritten as

Λγ = X∗(Gγ)
ΓF ↪→ X∗(Gγ)→ X∗(Gγ)ΓF

≃ π0(LGγ).

In particular, the homomorphism Λγ → Λ̃γ := π0(LGγ) is injective, and the quotient Λγ := Λ̃γ/Λγ
is �nite.

Consider induced representation Ṽ := ind
Λ̃γ

Λγ
(V ) of Λ× Λ̃γ . Then, by Step 1, for every represen-

tation ν̃ ∈ RepQl
(Λ̃γ), we have

ν̃ ⊗LQℓ[Λ̃γ ]
Ṽ ≃ (ν̃|Λγ )⊗LQℓ[Λγ ]

V ∈ D≥−2δw,r ,

where ν̃|Λγ
denotes the restriction of ν, and we want to show that

τ ⊗LQℓ[Λ]
Ṽ ≃ (τ ⊗LQℓ[Λ]

V )⊕|Λγ | ∈ D≥−dr .

Step 3. Next we are going to rephrase the assertion of Step 2 geometrically:

Set X := Spec(Qℓ[Λ̃γ ]) and Y := Spec(Qℓ[Λ]). Then X and Y are a�ne algebraic groups (hence
smooth equidimensional a�ne schemes) of dimensions dimX = r− cw and dimY = r, respectively.

Since Ṽ is equipped with an action of Λ× Λ̃γ , it corresponds to an object K ∈ Db(QCoh(X × Y )).

Note that a quasi-coherent sheaf A ∈ QCoh(X) corresponds to a representation ν̃ ∈ RepQℓ
(Λ̃γ),

and the derived tensor product ν̃ ⊗LQℓ[Λ̃γ ]
Ã corresponds to K ⊗L p∗X(ι∗A) ∈ Db(QCoh(X × Y )),

where involution ι : λ 7→ λ−1 appears because of conventions of Section 1.2.8(d). Similarly, a
representation τ ∈ RepQℓ

(Λ) corresponds to a quasi-coherent sheaf B ∈ QCoh(Y ) and the derived

tensor product K ⊗L p∗Y (ι∗B) ∈ Db(QCoh(X × Y )) corresponds to τ ⊗LQℓ[Λ]
Ṽ .

Hence, by Step 2, we have K ⊗L p∗XA ∈ D≥−2δw,r for all A ∈ QCoh(X), and it su�ces to show
that we have K ⊗L p∗YB ∈ D≥−dr for all B ∈ QCoh(Y ).
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Step 4. Recall that Gγ ⊆ G is a maximal torus. Hence every Borel subgroup B ⊇ Gγ over F
gives rise to an isomorphism

ϕ = ϕB : Gγ ↪→ B → B/[B,B] ≃ T,

and following [BV] we call such isomorphisms admissible.5

Every admissible isomorphism ϕ gives rise to a surjective homomorphism of groups

Λ = X∗(T )
ϕ−→ X∗(Gγ)→ X∗(Gγ)ΓF

≃ Λ̃γ
ι→ Λ̃γ ,

where ι is the map ι : g 7→ g−1, hence a surjective homomorphism of Ql-algebras Ql[Λ] → Ql[Λ̃γ ].
Therefore ϕ gives rise to a closed embedding Y ↪→ X, which we will denote by ηϕ.

Also the surjective homomorphism of groups Λ̃γ → Λγ gives rise to a homomorphism of alge-

braic groups Λγ = Spec(Qℓ[Λγ ]) → Spec(Qℓ[Λ̃γ ]) = X. In particular, every λ ∈ Λγ induces an
automorphism of X, hence a closed embedding ηϕ,λ := λ ◦ ηϕ : Y ↪→ X.

Step 5. By Claim 3.2.4 below, the quasi-coherent sheaf K ∈ Db(QCoh(X × Y )) is set-
theoretically supported on the union of graphs of the ηϕ,λ's. Hence, by observation of Step 3 and
identities dimX−dimY = cw and −dr = −2δw,r− cw, our assertion follows from Proposition 1.4.3
applied to the quasi-coherent sheaf K[−2δw,r] and closed embeddings {ηϕ,λ}ϕ,λ. □

Claim 3.2.4. The quasi-coherent sheaf K ∈ Db(QCoh(X×Y )) from Step 3 is set-theoretically sup-
ported on the union of graphs of the ηϕ,λ's, where ϕ runs over the set of all admissible isomorphisms

Gγ
∼→ T and λ runs over elements of Λγ .

Proof. It su�ces to show that each cohomology sheaf Hi(K) is supported on the union of graphs
of the ηϕ,λ's.

By de�nition, Hi(K) corresponds to the representation Hi(Ṽ ) ≃ ind
Λ̃γ

Λγ
(Hi(V )) of Λ× Λ̃γ , where

(as before) Hi(V ) is a representation of Λ × Λγ , obtained as a restriction of the representation of

Λ × LGγ . Moreover, the action of Λ × Λγ on Hi(V ) naturally extends to the action of Λ × Λ̃γ .
Namely, this follows from the fact that the action of LGγ on Hi(V ) = Hi(Flγ , ωL) factors through

Λ̃γ = π0(LGγ) (see Corollary 3.1.5(b)).

By the observations of the previous paragraph, representation Hi(Ṽ ) of Λ̃γ ×Λ decomposes as a
direct sum

⊕
λ∈Λγ

λHi(V ), where λHi(V ) denotes the twist of Hi(V ) by λ. Therefore, it su�ces to

show that the quasi-coherent sheaf Ki ∈ QCoh(X×Y ), corresponding to Hi(V ), is set-theoretically
supported on the union of graphs of the ηϕ's. As it was explained in the proof of [BV, Claim 5.3.4],
the assertion follows from [BV, Theorem 2.3.4], which is the group version of [Yun2, Theorem 2]. □

Corollary 3.2.5. For every W -equivariant local system on L on T and every τ ∈ RepQℓ
(W̃ ), the

sheaf of τ -coinvariants SL,•,τ = coinvτ (SL,•) ∈ D([C•/LG]) is pν-perverse.

Proof. Since SL,•,τ ≃ (SL,•,τ |Λ)W and (SL,•,τ |Λ)W is a retract of SL,•,τ |Λ , the assertion follows from
Theorem 3.2.1. □

3.2.6. Remark. Note that Theorem 3.2.1 is a formal consequence of Corollary 3.2.5. Indeed, for

every local system on L on T , the local system L̃ :=
⊕

w∈W w!(L) has a natural W -equivariant

5The collection of admissible isomorphisms form a W -torsor.
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structure. Moreover, for every τ ∈ RepQℓ
(Λ) and τ̃ := indW̃Λ (τ) ∈ RepQℓ

(W̃ ), we have a natural

isomorphism SL,•,τ ≃ SL̃,•,τ̃ .

Finally, we are going to show a version of Corollary 3.2.5 for Lie algebras.

3.2.7. Lie algebra case. Let g be the Lie algebra of G, let Cg,• ⊆ L g be the locally closed
ind-subscheme, denote in [BKV] by C•, and let Sg,• ∈ D([Cg,•/LG]) be the a�ne Grothendieck�
Springer sheaf for Lie algebras denoted by S• in [BKV]. Then, by [BKV, Theorem 7.1.4], Sg,• is

perverse and is equipped with a W̃ -action. Hence, as in Corollary 3.1.5(b), Sg,• has a natural lift

to an object of DW̃ ([Cg,•/LG]), so for every representation τ ∈ RepQℓ
(W̃ ), one can form the sheaf

of τ -coinvariants Sg,•,τ = coinvτ (Sg,•) ∈ D([Cg,•/LG]).

Theorem 3.2.8. For every τ ∈ RepQℓ
(W̃ ), the sheaf Sg,•,τ ∈ D([Cg,•/LG]) is perverse.

Proof. To prove the result, we repeat the argument of Theorem 3.2.1 word-by-word, replacing results
of the current work by those of [BKV] and replacing [BV, Theorem 2.3.4] by [Yun2, Theorem 2]. □
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